scholarly journals Combined effects of warming and acidification on accumulation and elimination dynamics of paralytic shellfish toxins in mussels Mytilus galloprovincialis

2018 ◽  
Vol 164 ◽  
pp. 647-654 ◽  
Author(s):  
Ana C. Braga ◽  
Carolina Camacho ◽  
António Marques ◽  
Ana Gago-Martínez ◽  
Mário Pacheco ◽  
...  
2020 ◽  
Vol 8 (6) ◽  
pp. 905
Author(s):  
Abanti Barua ◽  
Penelope A. Ajani ◽  
Rendy Ruvindy ◽  
Hazel Farrell ◽  
Anthony Zammit ◽  
...  

In 2016, 2017 and 2018, elevated levels of the species Alexandrium pacificum were detected within a blue mussel (Mytilus galloprovincialis) aquaculture area at Twofold Bay on the south coast of New South Wales, Australia. In 2016, the bloom persisted for at least eight weeks and maximum cell concentrations of 89,000 cells L−1 of A. pacificum were reported. The identity of A. pacificum was confirmed using molecular genetic tools (qPCR and amplicon sequencing) and complemented by light and scanning electron microscopy of cultured strains. Maximum reported concentrations of paralytic shellfish toxins (PSTs) in mussel tissue was 7.2 mg/kg PST STX equivalent. Elevated cell concentrations of A. pacificum were reported along the adjacent coastal shelf areas, and positive PST results were reported from nearby oyster producing estuaries during 2016. This is the first record of PSTs above the regulatory limit (0.8 mg/kg) in commercial aquaculture in New South Wales since the establishment of routine biotoxin monitoring in 2005. The intensity and duration of the 2016 A. pacificum bloom were unusual given the relatively low abundances of A. pacificum in estuarine and coastal waters of the region found in the prior 10 years.


Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 51
Author(s):  
Jisun Shin ◽  
Soo Mee Kim

Paralytic shellfish toxins (PSTs) are produced mainly by Alexandrium catenella (formerly A. tamarense). Since 2000, the National Institute of Fisheries Science (NIFS) has been providing information on PST outbreaks in Korean coastal waters at one- or two-week intervals. However, a daily forecast is essential for immediate responses to PST outbreaks. This study aimed to predict the outbreak timing of PSTs in the mussel Mytilus galloprovincialis in Jinhae Bay and along the Geoje coast in the southern coast of the Korea Peninsula. We used a long-short-term memory (LSTM) neural network model for temporal prediction of PST outbreaks from environmental data, such as water temperature (WT), tidal height, and salinity, measured at the Geojedo, Gadeokdo, and Masan tidal stations from 2006 to 2020. We found that PST outbreaks is gradually accelerated during the three years from 2018 to 2020. Because the in-situ environmental measurements had many missing data throughout the time span, we applied LSTM for gap-filling of the environmental measurements. We trained and tested the LSTM models with different combinations of environmental factors and the ground truth timing data of PST outbreaks for 5479 days as input and output. The LSTM model trained from only WT had the highest accuracy (0.9) and lowest false-alarm rate. The LSTM-based temporal prediction model may be useful as a monitoring system of PSP outbreaks in the coastal waters of southern Korean.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 425
Author(s):  
Yunyu Tang ◽  
Haiyan Zhang ◽  
Yu Wang ◽  
Chengqi Fan ◽  
Xiaosheng Shen

This study assessed the impact of increasing seawater surface temperature (SST) and toxic algal abundance (TAA) on the accumulation, tissue distribution and elimination dynamics of paralytic shellfish toxins (PSTs) in mussels. Mytilus coruscus were fed with the PSTs-producing dinoflagellate A. catenella under four simulated environment conditions. The maximum PSTs concentration was determined to be 3548 µg STX eq.kg−1, which was four times higher than the EU regulatory limit. The increasing SST caused a significant decline in PSTs levels in mussels with rapid elimination rates, whereas high TAA increased the PSTs concentration. As a result, the PSTs toxicity levels decreased under the combined condition. Additionally, toxin burdens were assessed within shellfish tissues, with the highest levels quantified in the hepatopancreas. It is noteworthy that the toxin burden shifted towards the mantle from gill, muscle and gonad at the 17th day. Moreover, variability of PSTs was measured, and was associated with changes in each environmental factor. Hence, this study primarily illustrates the combined effects of SST and TAA on PSTs toxicity, showing that increasing environmental temperature is of benefit to lower PSTs toxicity with rapid elimination rates.


Sign in / Sign up

Export Citation Format

Share Document