scholarly journals Combined Effects of Temperature and Toxic Algal Abundance on Paralytic Shellfish Toxic Accumulation, Tissue Distribution and Elimination Dynamics in Mussels Mytilus coruscus

Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 425
Author(s):  
Yunyu Tang ◽  
Haiyan Zhang ◽  
Yu Wang ◽  
Chengqi Fan ◽  
Xiaosheng Shen

This study assessed the impact of increasing seawater surface temperature (SST) and toxic algal abundance (TAA) on the accumulation, tissue distribution and elimination dynamics of paralytic shellfish toxins (PSTs) in mussels. Mytilus coruscus were fed with the PSTs-producing dinoflagellate A. catenella under four simulated environment conditions. The maximum PSTs concentration was determined to be 3548 µg STX eq.kg−1, which was four times higher than the EU regulatory limit. The increasing SST caused a significant decline in PSTs levels in mussels with rapid elimination rates, whereas high TAA increased the PSTs concentration. As a result, the PSTs toxicity levels decreased under the combined condition. Additionally, toxin burdens were assessed within shellfish tissues, with the highest levels quantified in the hepatopancreas. It is noteworthy that the toxin burden shifted towards the mantle from gill, muscle and gonad at the 17th day. Moreover, variability of PSTs was measured, and was associated with changes in each environmental factor. Hence, this study primarily illustrates the combined effects of SST and TAA on PSTs toxicity, showing that increasing environmental temperature is of benefit to lower PSTs toxicity with rapid elimination rates.

2018 ◽  
Vol 164 ◽  
pp. 647-654 ◽  
Author(s):  
Ana C. Braga ◽  
Carolina Camacho ◽  
António Marques ◽  
Ana Gago-Martínez ◽  
Mário Pacheco ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 293
Author(s):  
Chao Liu ◽  
Jiangbing Qiu ◽  
Zhixuan Tang ◽  
Hong Hu ◽  
Fanping Meng ◽  
...  

Microplastics (MP) widely distributed in aquatic environments have adverse effects on aquatic organisms. Currently, the impact of MP on toxigenic red tide microalgae is poorly understood. In this study, the strain of Alexandriumpacificum ATHK, typically producing paralytic shellfish toxins (PST), was selected as the target. Effects of 1 and 0.1 μm polystyrene MP with three concentration gradients (5 mg L−1, 25 mg L−1 and 100 mg L−1) on the growth, chlorophyll a (Chl a), photosynthetic activity (Fv/Fm) and PST production of ATHK were explored. Results showed that the high concentration (100 mg L−1) of 1 μm and 0.1 μm MP significantly inhibited the growth of ATHK, and the inhibition depended on the size and concentration of MP. Contents of Chl a showed an increase with various degrees after MP exposure in all cases. The photosynthesis indicator Fv/Fm of ATHK was significantly inhibited in the first 11 days, then gradually returned to the level of control group at day 13, and finally was gradually inhibited in the 1 μm MP treatments, and promotion or inhibition to some degree also occurred at different periods after exposure to 0.1 μm MP. Overall, both particle sizes of MP at 5 and 25 mg L−1 had no significant effect on cell toxin quota, and the high concentration 100 mg L−1 significantly promoted the PST biosynthesis on the day 7, 11 and 15. No significant difference occurred in the cell toxin quota and the total toxin content in all treatments at the end of the experiment (day 21). All MP treatments did not change the toxin profiles of ATHK, nor did the relative molar percentage of main PST components. The growth of ATHK, Chl a content, Fv/Fm and toxin production were not affected by MP shading. This is the first report on the effects of MP on the PST-producing microalgae, which will improve the understanding of the adverse impact of MP on the growth and toxin production of A. pacificum.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 380
Author(s):  
Floriane Boullot ◽  
Caroline Fabioux ◽  
Hélène Hégaret ◽  
Pierre Boudry ◽  
Philippe Soudant ◽  
...  

Pacific oysters (Crassostrea gigas) may bio-accumulate high levels of paralytic shellfish toxins (PST) during harmful algal blooms of the genus Alexandrium. These blooms regularly occur in coastal waters, affecting oyster health and marketability. The aim of our study was to analyse the PST-sensitivity of nerves of Pacific oysters in relation with toxin bio-accumulation. The results show that C. gigas nerves have micromolar range of saxitoxin (STX) sensitivity, thus providing intermediate STX sensitivity compared to other bivalve species. However, theses nerves were much less sensitive to tetrodotoxin. The STX-sensitivity of compound nerve action potential (CNAP) recorded from oysters experimentally fed with Alexandrium minutum (toxic-alga-exposed oysters), or Tisochrysis lutea, a non-toxic microalga (control oysters), revealed that oysters could be separated into STX-resistant and STX-sensitive categories, regardless of the diet. Moreover, the percentage of toxin-sensitive nerves was lower, and the STX concentration necessary to inhibit 50% of CNAP higher, in recently toxic-alga-exposed oysters than in control bivalves. However, no obvious correlation was observed between nerve sensitivity to STX and the STX content in oyster digestive glands. None of the nerves isolated from wild and farmed oysters was detected to be sensitive to tetrodotoxin. In conclusion, this study highlights the good potential of cerebrovisceral nerves of Pacific oysters for electrophysiological and pharmacological studies. In addition, this study shows, for the first time, that C. gigas nerves have micromolar range of STX sensitivity. The STX sensitivity decreases, at least temporary, upon recent oyster exposure to dinoflagellates producing PST under natural, but not experimental environment.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 168
Author(s):  
Wade A. Rourke ◽  
Andrew Justason ◽  
Jennifer L. Martin ◽  
Cory J. Murphy

Shellfish toxin monitoring programs often use mussels as the sentinel species to represent risk in other bivalve shellfish species. Studies have examined accumulation and depuration rates in various species, but little information is available to compare multiple species from the same harvest area. A 2-year research project was performed to validate the use of mussels as the sentinel species to represent other relevant eastern Canadian shellfish species (clams, scallops, and oysters). Samples were collected simultaneously from Deadmans Harbour, NB, and were tested for paralytic shellfish toxins (PSTs) and amnesic shellfish toxin (AST). Phytoplankton was also monitored at this site. Scallops accumulated PSTs and AST sooner, at higher concentrations, and retained toxins longer than mussels. Data from monitoring program samples in Mahone Bay, NS, are presented as a real-world validation of findings. Simultaneous sampling of mussels and scallops showed significant differences between shellfish toxin results in these species. These data suggest more consideration should be given to situations where multiple species are present, especially scallops.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Darina Czamara ◽  
Elleke Tissink ◽  
Johanna Tuhkanen ◽  
Jade Martins ◽  
Yvonne Awaloff ◽  
...  

AbstractLasting effects of adversity, such as exposure to childhood adversity (CA) on disease risk, may be embedded via epigenetic mechanisms but findings from human studies investigating the main effects of such exposure on epigenetic measures, including DNA methylation (DNAm), are inconsistent. Studies in perinatal tissues indicate that variability of DNAm at birth is best explained by the joint effects of genotype and prenatal environment. Here, we extend these analyses to postnatal stressors. We investigated the contribution of CA, cis genotype (G), and their additive (G + CA) and interactive (G × CA) effects to DNAm variability in blood or saliva from five independent cohorts with a total sample size of 1074 ranging in age from childhood to late adulthood. Of these, 541 were exposed to CA, which was assessed retrospectively using self-reports or verified through social services and registries. For the majority of sites (over 50%) in the adult cohorts, variability in DNAm was best explained by G + CA or G × CA but almost never by CA alone. Across ages and tissues, 1672 DNAm sites showed consistency of the best model in all five cohorts, with G × CA interactions explaining most variance. The consistent G × CA sites mapped to genes enriched in brain-specific transcripts and Gene Ontology terms related to development and synaptic function. Interaction of CA with genotypes showed the strongest contribution to DNAm variability, with stable effects across cohorts in functionally relevant genes. This underscores the importance of including genotype in studies investigating the impact of environmental factors on epigenetic marks.


Sign in / Sign up

Export Citation Format

Share Document