Emissions and toxic units of solvent, monomer and additive residues released to gaseous phase from latex balloons

2021 ◽  
Vol 195 ◽  
pp. 110700
Author(s):  
Mariusz Marć ◽  
Stefan Tsakovski ◽  
Marek Tobiszewski
Keyword(s):  
1985 ◽  
Vol 50 (4) ◽  
pp. 947-955 ◽  
Author(s):  
Karel Klouda ◽  
Václav Rak ◽  
Josef Vachuška

Intercalation of UF6 into graphite, both from the gaseous phase and from the Ledon 113 solution, was studied. The amount of intercalated UF6 from the gaseous phase was found to be inversely proportional to the size of graphite particles. Intercalation increases with the increasing temperature and surface area of graphite. The contact of gaseous UF6 with graphite led to the formation of β-UF5 that is not intercalated. In the Ledon solution, β-UF5 is not formed. "Passivation" of graphite by elementary fluorine also prevents the formation of β-UF5 but the amount of intercalated UF6 decreases. The intercalation of UF6 into graphite from the gaseous phase is accompanied by the increase of the distance between the parallel carbon atom layers up to the values of about 884 pm. Ternary intercalates graphite-UF6-Ledon 113 are formed during the intercalation of UF6 from the Ledon 113 solutions and the distance between the parallel carbon atom layers is 848-875 pm. Thermogravimetry in the presence of air revealed that the binary intercalates graphite-UF6 decompose in a 3-step reaction while the ternary intercalates decompose in a 4-step reaction. In both cases uranium hexafluoride is not released but acts as a fluorination agent on the graphite carbon.


1985 ◽  
Vol 14 (4) ◽  
pp. 947-970 ◽  
Author(s):  
K. Kadoya ◽  
N. Matsunaga ◽  
A. Nagashima

1969 ◽  
Vol 11 (2) ◽  
pp. 189-205 ◽  
Author(s):  
E. A. Bruges ◽  
M. R. Gibson

Equations specifying the dynamic viscosity of compressed water and steam are presented. In the temperature range 0-100cC the location of the inversion locus (mu) is defined for the first time with some precision. The low pressure steam results are re-correlated and a higher inversion temperature is indicated than that previously accepted. From 100 to 600°C values of viscosity are derived up to 3·5 kilobar and between 600 and 1500°C up to 1 kilobar. All the original observations in the gaseous phase have been corrected to a consistent set of densities and deviation plots for all the new correlations are given. Although the equations give values within the tolerances of the International Skeleton Table it is clear that the range and tolerances of the latter could with some advantage be revised to give twice the existing temperature range and over 10 times the existing pressure range at low temperatures. A list of the observations used and their deviations from the correlating equations is available as a separate publication.


Author(s):  
P. G. Wright

SynopsisBeginning with fundamental results obtained by Mason for the effect of self-cooling on the evaporation of drops, and by Fuchs for the diffusional retardation of evaporation for small droplets of any radius, explicit expressions for the effect of the transport of heat on the rate of quasi-stationary growth or evaporation, are discussed.The simplest algebraic formulation of the results lends itself to interpretation as expressing a resistance to evaporation, the total resistance being the sum of four resistances in series. Two of these resistances, one to diffusion and one to the conduction of heat, are offered by the gaseous phase in bulk; and there are two corresponding resistances at the interface. Corrections are formulated for the effect of the heating of the droplet by radiation. These corrections may be expressed as a (finite) resistance in parallel with the other two resistances to the transfer of heat. Simplified equations are obtained for the evaporation of a liquid whose latent heat of vaporization is very large.Some remarks are made on the formation of a monodisperse aerosol by the growth of smaller droplets. Integrated expressions are obtained for particular cases of the evaporation of a droplet over a finite period of time.


Sign in / Sign up

Export Citation Format

Share Document