Effect of pH on the performance of hydrogen production by dark fermentation coupled denitrification

2022 ◽  
pp. 112663
Author(s):  
Taotao Tang ◽  
Ying Chen ◽  
Min Liu ◽  
Ye Du ◽  
Yichuan Tan
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. M. Silva ◽  
A. A. Abreu ◽  
A. F. Salvador ◽  
M. M. Alves ◽  
I. C. Neves ◽  
...  

AbstractThermophilic biohydrogen production by dark fermentation from a mixture (1:1) of C5 (arabinose) and C6 (glucose) sugars, present in lignocellulosic hydrolysates, and from Sargassum sp. biomass, is studied in this work in batch assays and also in a continuous reactor experiment. Pursuing the interest of studying interactions between inorganic materials (adsorbents, conductive and others) and anaerobic bacteria, the biological processes were amended with variable amounts of a zeolite type-13X in the range of zeolite/inoculum (in VS) ratios (Z/I) of 0.065–0.26 g g−1. In the batch assays, the presence of the zeolite was beneficial to increase the hydrogen titer by 15–21% with C5 and C6-sugars as compared to the control, and an increase of 27% was observed in the batch fermentation of Sargassum sp. Hydrogen yields also increased by 10–26% with sugars in the presence of the zeolite. The rate of hydrogen production increased linearly with the Z/I ratios in the experiments with C5 and C6-sugars. In the batch assay with Sargassum sp., there was an optimum value of Z/I of 0.13 g g−1 where the H2 production rate observed was the highest, although all values were in a narrow range between 3.21 and 4.19 mmol L−1 day−1. The positive effect of the zeolite was also observed in a continuous high-rate reactor fed with C5 and C6-sugars. The increase of the organic loading rate (OLR) from 8.8 to 17.6 kg m−3 day−1 of COD led to lower hydrogen production rates but, upon zeolite addition (0.26 g g−1 VS inoculum), the hydrogen production increased significantly from 143 to 413 mL L−1 day−1. Interestingly, the presence of zeolite in the continuous operation had a remarkable impact in the microbial community and in the profile of fermentation products. The effect of zeolite could be related to several properties, including the porous structure and the associated surface area available for bacterial adhesion, potential release of trace elements, ion-exchanger capacity or ability to adsorb different compounds (i.e. protons). The observations opens novel perspectives and will stimulate further research not only in biohydrogen production, but broadly in the field of interactions between bacteria and inorganic materials.


2015 ◽  
Vol 45 (11) ◽  
pp. 1223-1229 ◽  
Author(s):  
Isaac Rivera ◽  
Germán Buitrón ◽  
Péter Bakonyi ◽  
Nándor Nemestóthy ◽  
Katalin Bélafi-Bakó

2013 ◽  
pp. 377-380
Author(s):  
Shao-Yi Hsia ◽  
Yu-Tuan Chou ◽  
Ching-Hsiung Wang

2018 ◽  
Vol 95 ◽  
pp. 354 ◽  
Author(s):  
Rafał Łukajtis ◽  
Iwona Hołowacz ◽  
Karolina Kucharska ◽  
Marta Glinka ◽  
Piotr Rybarczyk ◽  
...  

2021 ◽  
Author(s):  
Giorgia De Gioannis ◽  
Alessandro Dell'Era ◽  
Aldo Muntoni ◽  
Mauro Pasquali ◽  
Alessandra Polettini ◽  
...  

Abstract This study investigated the performance of a novel integrated bio-electrochemical system for synergistic hydrogen production from a process combining a dark fermentation reactor and a galvanic cell. The operating principle of the system is based on the electrochemical conversion of protons released upon dissociation of the acid metabolites of the biological process and is mediated by the electron flow from the galvanic cell, coupling biochemical and electrochemical hydrogen production. Accordingly, the galvanic compartment also generates electricity. Four different experimental setups were designed to provide a preliminary assessment of the integrated bio-electrochemical process and identify the optimal configuration for further tests. Subsequently, dark fermentation of cheese whey was implemented both in a stand-alone biochemical reactor and in the integrated bio-electrochemical process. The integrated system achieved a hydrogen yield in the range 75.5 – 78.8 N LH2/kg TOC, showing a 3 times improvement over the biochemical process.


2021 ◽  
Author(s):  
Menia Sabah ◽  
Nouicer Ilyes ◽  
Khellaf Abdallah

Sign in / Sign up

Export Citation Format

Share Document