Bio-electrochemical production of hydrogen and electricity from organic waste

Author(s):  
Giorgia De Gioannis ◽  
Alessandro Dell'Era ◽  
Aldo Muntoni ◽  
Mauro Pasquali ◽  
Alessandra Polettini ◽  
...  

Abstract This study investigated the performance of a novel integrated bio-electrochemical system for synergistic hydrogen production from a process combining a dark fermentation reactor and a galvanic cell. The operating principle of the system is based on the electrochemical conversion of protons released upon dissociation of the acid metabolites of the biological process and is mediated by the electron flow from the galvanic cell, coupling biochemical and electrochemical hydrogen production. Accordingly, the galvanic compartment also generates electricity. Four different experimental setups were designed to provide a preliminary assessment of the integrated bio-electrochemical process and identify the optimal configuration for further tests. Subsequently, dark fermentation of cheese whey was implemented both in a stand-alone biochemical reactor and in the integrated bio-electrochemical process. The integrated system achieved a hydrogen yield in the range 75.5 – 78.8 N LH2/kg TOC, showing a 3 times improvement over the biochemical process.

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Oren Ben-Zvi ◽  
Eyal Dafni ◽  
Yael Feldman ◽  
Iftach Yacoby

Abstract Background Hydrogen is considered a promising energy vector that can be produced from sustainable resources such as sunlight and water. In green algae, such as Chlamydomonas reinhardtii, photoproduction of hydrogen is catalyzed by the enzyme [FeFe]-hydrogenase (HydA). Although highly efficient, this process is transitory and thought to serve as a release valve for excess reducing power. Up to date, prolonged production of hydrogen was achieved by the deprivation of either nutrients or light, thus, hindering the full potential of photosynthetic hydrogen production. Previously we showed that the enzyme superoxide dismutase (SOD) can enhance HydA activity in vitro, specifically when tied together to a fusion protein. Results In this work, we explored the in vivo hydrogen production phenotype of HydA–SOD fusion. We found a sustained hydrogen production, which is dependent on linear electron flow, although other pathways feed it as well. In addition, other characteristics such as slower growth and oxygen production were also observed in Hyd–SOD-expressing algae. Conclusions The Hyd–SOD fusion manages to outcompete the Calvin–Benson cycle, allowing sustained hydrogen production for up to 14 days in non-limiting conditions.


2018 ◽  
Vol 2 (4) ◽  
pp. 61 ◽  
Author(s):  
Jürgen Loipersböck ◽  
Markus Luisser ◽  
Stefan Müller ◽  
Hermann Hofbauer ◽  
Reinhard Rauch

The worldwide production of hydrogen in 2010 was estimated to be approximately 50 Mt/a, mostly based on fossil fuels. By using lignocellulosic feedstock, an environmentally friendly hydrogen production route can be established. A flow sheet simulation for a biomass based hydrogen production plant was published in a previous work. The plant layout consisted of a dual fluidized bed gasifier including a gas cooler and a dust filter. Subsequently, a water gas shift plant was installed to enhance the hydrogen yield and a biodiesel scrubber was used to remove tars and water from the syngas. CO2 was removed and the gas was compressed to separate hydrogen in a pressure swing adsorption. A steam reformer was used to reform the hydrocarbon-rich tail gas of the pressure swing adsorption and increase the hydrogen yield. Based on this work, a research facility was erected and the results were validated. These results were used to upscale the research plant to a 10 MW fuel feed scale. A validation of the system showed a chemical efficiency of the system of 60% and an overall efficiency of 55%, which indicates the high potential of this technology.


2019 ◽  
Vol 26 (2) ◽  
pp. 255-263
Author(s):  
Gaweł Sołowski ◽  
Izabela Konkol ◽  
Adam Cenian

Abstract A model for calculating the maximal theoretical production of hydrogen from corn wastes is proposed. The model has been used to estimate the potential for hydrogen production from cereals wastes such as wheat, barley, and corn which are cultivated in Poland. The potentials for Pomorze and other regions of Poland are compared. The hydrogen produced from cereal wastes in Poland could potentially meet 47 % of national hydrogen demand.


2017 ◽  
Vol 35 (10) ◽  
pp. 1045-1054 ◽  
Author(s):  
Yeshui Zhang ◽  
Yongwen Tao ◽  
Jun Huang ◽  
Paul Williams

The influence of catalyst support alumina–silica in terms of different Al2O3 to SiO2 mole ratios containing 20 wt.% Ni on the production of hydrogen and catalyst coke formation from the pyrolysis-catalysis of waste tyres is reported. A two-stage reactor system was used with pyrolysis of the tyres followed by catalytic reaction. There was only a small difference in the total gas yield and hydrogen yield by changing the Al2O3 to SiO2 mole ratios in the Ni-Al2O3/SiO2 catalyst. The 1:1 ratio of Al2O3:SiO2 ratio produced the highest gas yield of 27.3 wt.% and a hydrogen production of 14.0 mmol g-1tyre. Catalyst coke formation decreased from 19.0 to 13.0 wt.% as the Al2O3:SiO2 ratio was changed from 1:1 to 2:1, with more than 95% of the coke being filamentous-type carbon, a large proportion of which was multi-walled carbon nanotubes. Further experiments introduced steam to the second-stage reactor to investigate hydrogen production for the pyrolysis-catalytic steam reforming of the waste tyres using the 1:1 Al2O3/SiO2 nickel catalyst. The introduction of steam produced a marked increase in total gas yield from ~27 wt. % to ~58 wt.%; in addition, hydrogen production was increased to 34.5 mmol g-1 and there was a reduction in catalyst coke formation to 4.6 wt.%.


2007 ◽  
Vol 61 (2) ◽  
Author(s):  
K. Svoboda ◽  
A. Siewiorek ◽  
D. Baxter ◽  
J. Rogut ◽  
M. Punčochář

AbstractThe reduction of chromium, nickel, and manganese oxides by hydrogen, CO, CH4, and model syngas (mixtures of CO + H2 or H2 + CO + CO2) and oxidation by water vapor has been studied from the thermodynamic and chemical equilibrium point of view. Attention was concentrated not only on the convenient conditions for reduction of the relevant oxides to metals or lower oxides at temperatures in the range 400–1000 K, but also on the possible formation of soot, carbides, and carbonates as precursors for the carbon monoxide and carbon dioxide formation in the steam oxidation step. Reduction of very stable Cr2O3 to metallic Cr by hydrogen or CO at temperatures of 400–1000 K is thermodynamically excluded. Reduction of nickel oxide (NiO) and manganese oxide (Mn3O4) by hydrogen or CO at such temperatures is feasible. The oxidation of MnO and Ni by steam and simultaneous production of hydrogen at temperatures between 400 and 1000 K is a difficult step from the thermodynamics viewpoint. Assuming the Ni—NiO system, the formation of nickel aluminum spinel could be used to increase the equilibrium hydrogen yield, thus, enabling the hydrogen production via looping redox process. The equilibrium hydrogen yield under the conditions of steam oxidation of the Ni—NiO system is, however, substantially lower than that for the Fe—Fe3O4 system. The system comprising nickel ferrite seems to be unsuitable for cyclic redox processes. Under strongly reducing conditions, at high CO concentrations/partial pressures, formation of nickel carbide (Ni3C) is thermodynamically favored. Pressurized conditions during the reduction step with CO/CO2 containing gases enhance the formation of soot and carbon-containing compounds such as carbides and/or carbonates.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 71 ◽  
Author(s):  
Edilson Cárdenas ◽  
Arley Zapata-Zapata ◽  
Daehwan Kim

One of primary issues in the coffee manufacturing industry is the production of large amounts of undesirable residues, which include the pericarp (outer skin), pulp (outer mesocarp), parchment (endocarp), silver-skin (epidermis) and mucilage (inner mesocarp) that cause environmental problems due to toxic molecules contained therein. This study evaluated the optimal hydrogen production from coffee mucilage combined with organic wastes (wholesale market garbage) in a dark fermentation process. The supplementation of organic wastes offered appropriate carbon and nitrogen sources with further nutrients; it was positively effective in achieving cumulative hydrogen production. Three different ratios of coffee mucilage and organic wastes (8:2, 5:5, and 2:8) were tested in 30 L bioreactors using two-level factorial design experiments. The highest cumulative hydrogen volume of 25.9 L was gained for an 8:2 ratio (coffee mucilage: organic wastes) after 72 h, which corresponded to 1.295 L hydrogen/L substrates (0.248 mol hydrogen/mol hexose). Biochemical identification of microorganisms found that seven microorganisms were involved in the hydrogen metabolism. Further studies of anaerobic fermentative digestion with each isolated pure bacterium under similar experimental conditions reached a lower final hydrogen yield (up to 9.3 L) than the result from the non-isolated sample (25.9 L). Interestingly, however, co-cultivation of two identified microorganisms (Kocuria kristinae and Brevibacillus laterosporus), who were relatively highly associated with hydrogen production, gave a higher yield (14.7 L) than single bacterium inoculum but lower than that of the non-isolated tests. This work confirms that the re-utilization of coffee mucilage combined with organic wastes is practical for hydrogen fermentation in anaerobic conditions, and it would be influenced by the bacterial consortium involved.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1017
Author(s):  
Margarita Andreas Dareioti ◽  
Aikaterini Ioannis Vavouraki ◽  
Konstantina Tsigkou ◽  
Constantina Zafiri ◽  
Michael Kornaros

The aim of this study was to determine the optimal conditions for dark fermentation using agro-industrial liquid wastewaters mixed with sweet sorghum stalks (i.e., 55% sorghum, 40% cheese whey, and 5% liquid cow manure). Batch experiments were performed to investigate the effect of controlled pH (5.0, 5.5, 6.0, 6.5) on the production of bio-hydrogen and volatile fatty acids. According to the obtained results, the maximum hydrogen yield of 0.52 mol H2/mol eq. glucose was measured at pH 5.5 accompanied by the highest volatile fatty acids production, whereas similar hydrogen productivity was also observed at pH 6.0 and 6.5. The use of heat-treated anaerobic sludge as inoculum had a positive impact on bio-hydrogen production, exhibiting an increased yield of 1.09 mol H2/mol eq. glucose. On the other hand, the pretreated (ensiled) sorghum, instead of a fresh one, led to a lower hydrogen production, while the organic load decrease did not affect the process performance. In all experiments, the main fermentation end-products were volatile fatty acids (i.e., acetic, propionic, butyric), ethanol and lactic acid.


2021 ◽  
Vol 3 (1) ◽  
pp. 156-182
Author(s):  
A K M Khabirul Islam ◽  
Patrick S. M. Dunlop ◽  
Neil J. Hewitt ◽  
Rose Lenihan ◽  
Caterina Brandoni

Billions of litres of wastewater are produced daily from domestic and industrial areas, and whilst wastewater is often perceived as a problem, it has the potential to be viewed as a rich source for resources and energy. Wastewater contains between four and five times more energy than is required to treat it, and is a potential source of bio-hydrogen—a clean energy vector, a feedstock chemical and a fuel, widely recognised to have a role in the decarbonisation of the future energy system. This paper investigates sustainable, low-energy intensive routes for hydrogen production from wastewater, critically analysing five technologies, namely photo-fermentation, dark fermentation, photocatalysis, microbial photo electrochemical processes and microbial electrolysis cells (MECs). The paper compares key parameters influencing H2 production yield, such as pH, temperature and reactor design, summarises the state of the art in each area, and highlights the scale-up technical challenges. In addition to H2 production, these processes can be used for partial wastewater remediation, providing at least 45% reduction in chemical oxygen demand (COD), and are suitable for integration into existing wastewater treatment plants. Key advancements in lab-based research are included, highlighting the potential for each technology to contribute to the development of clean energy. Whilst there have been efforts to scale dark fermentation, electro and photo chemical technologies are still at the early stages of development (Technology Readiness Levels below 4); therefore, pilot plants and demonstrators sited at wastewater treatment facilities are needed to assess commercial viability. As such, a multidisciplinary approach is needed to overcome the current barriers to implementation, integrating expertise in engineering, chemistry and microbiology with the commercial experience of both water and energy sectors. The review concludes by highlighting MECs as a promising technology, due to excellent system modularity, good hydrogen yield (3.6–7.9 L/L/d from synthetic wastewater) and the potential to remove up to 80% COD from influent streams.


2019 ◽  
Vol 27 (2) ◽  
pp. 101-113 ◽  
Author(s):  
Weronika Cieciura-Włoch ◽  
Sebastian Borowski

This study investigated the batch experiments on biohydrogen production from wastes of plant and animal origin. Several substrates including sugar beet pulp (SBP), sugar beet leaves (SBL), sugar beet stillage (SBS), rye stillage (RS), maize silage (MS), fruit and vegetable waste (FVW), kitchen waste (KW) and slaughterhouse waste (SHW) including intestinal wastes, meat tissue, post flotation sludge were tested for their suitability for hydrogen production. Generally, the substrates of plant origin were found to be appropriate for dark fermentation, and the highest hydrogen yield of 280 dm3 H2/kg VS was obtained from fruit and vegetable waste. Contrary to these findings, slaughterhouse waste as well as kitchen waste turned out to be unsuitable for hydrogen production although their methane potential was high. It was also concluded that the combined thermal pretreatment with substrate acidification was needed to achieve high hydrogen yields from wastes.


2018 ◽  
Vol 9 (1) ◽  
pp. 4-10
Author(s):  
Thi Thu Huyen Nguyen ◽  
Thi Yen Dang ◽  
Thuy Hien Lai

Limitation of fuels reserves and contribution of fossil fuels to the greenhouse effect leads to develop anew, clean and sustainable energy. Among the various options, biohydrogen appears as a promising alternative energy source. The fermentative hydrogen production process holds a great promise for commercial processes. Hydrogen production by fermentative bacteria is a very complex and greatly influenced by pH. This paper presents biohydrogen production by bacterial strain Clostridium sp. Tr2. Operational pH strongly affected its hyrogen production. Its gas production rate as well as obtained gas product were roughly increase twice under controlled pH at 6 than non-controlled condition. Dark fermentation for hydrogen production of strain Tr2 was performed under bottle as well as automatic fermenter scale under optimal nutritional and environmental conditions at 30°C, initial pH at 6.5, then pH was controlled at 6 for bioreactor scale (BioFlo 110). Bioreactor scale was much better for hydrogen production of strain Tr2. Clostridium sp. Tr2 produced 0.74 L hydro (L medium)-1 occupying 72.6 % of total gas under bottle scale while it produced 2.94 L hydro (L medium)-1 occupying 95.82 % of total gas under fermenter scale. Its maximum obtained hydrogen yield of Clostridium sp. Tr2 under bioreactor scale Bioflo 110 in optimal medium with controlled pH 6 was 2.31 mol hydro (mol glucose)-1. Dự trữ nhiên liệu có giới hạn và việc sử dụng nhiên liêu hoá thạch góp phần không nhỏ gây hiệu ứng nhà kính dẫn đến cần phải phát triển năng lượng mới, sạch và bền vững. Trong số các giải pháp, hydro sinh học xuất hiện như một nguồn năng lượng thay thế đầy hứa hẹn. Quá trình lên men sản xuất hydro có tiềm năng lớn để áp dụng trong sản xuất thương mại. Tuy nhiên qúa trình này rất phức tạp và chịu ảnh hưởng lớn bởi pH. Nghiên cứu này trình bày sản xuất hydro sinh học do chủng vi khuẩn Clostridium sp. Tr2. Quá trình sản xuất hydro của chủng này bị ảnh hưởng mạnh mẽ bởi pH thay đổi trong quá trình lên men. Tốc độ tạo khí cũng như lượng khí thu được của chủng này tăng gần gấp đôi trong môi trường có duy trì pH ở pH 6 so với môi trường không kiểm soát pH. Quá trình lên men tối sản xuất hydro của chủng Tr2 được thực hiện ở quy mô bình thí nghiệm cũng như bình lên men tự động trong điều kiện môi trường tối ưu ở 30°C, pH ban đầu 6.5, ở qui mô bình lên men tự động (BioFlo 110), pH môi trường sau đó được duy trì ổn định ở pH 6. Lên men sản xuất hdyro của chủng Tr2 trong bình lên men tự động tốt hơn rất nhiều so với lên men trong bình thí nghiệm. Clostridium sp. Tr2 chỉ tạo ra được 0,74 L hydro (L medium)-1 chiếm 72,6 % tổng thể tích khí thu được ở điều kiện lên men bình thí nghiệm trong khi chủng này sản xuất được 2,94 L hydro (L medium)-1 chiếm 95,82 % tổng thể tích khí ở điều kiện lên men tự động. Sản lượng hydro thu được lớn nhất của chủng này trong bình lên men tự động BioFlo 110 trong trong môi trường tối ưu có kiểm soát pH tại pH 6 là 2,31 mol hydro (mol glucose)-1.


Sign in / Sign up

Export Citation Format

Share Document