Expression of double foreign protein types following recombinant baculovirus infection of stably transfected Drosophila S2 cells

2004 ◽  
Vol 35 (6-7) ◽  
pp. 525-531 ◽  
Author(s):  
Hye Sook Cho ◽  
Yeon Kyu Kim ◽  
Hyung Joon Cha
1993 ◽  
Vol 122 (4) ◽  
pp. 961-972 ◽  
Author(s):  
SM Brady-Kalnay ◽  
AJ Flint ◽  
NK Tonks

The receptor-like protein tyrosine phosphatase, PTPmu, displays structural similarity to cell-cell adhesion molecules of the immunoglobulin superfamily. We have investigated the ability of human PTPmu to function in such a capacity. Expression of PTPmu, with or without the PTPase domains, by recombinant baculovirus infection of Sf9 cells induced their aggregation. However, neither a chimeric form of PTPmu, containing the extracellular and transmembrane segments of the EGF receptor and the intracellular segment of PTPmu, nor the intracellular segment of PTPmu expressed as a soluble protein induced aggregation. PTPmu mediates aggregation via a homophilic mechanism, as judged by lack of incorporation of uninfected Sf9 cells into aggregates of PTPmu-expressing cells. Homophilic binding has been demonstrated between PTPmu-coated fluorescent beads (Covaspheres) and endogenously expressed PTPmu on MvLu cells. Additionally the PTPmu-coated beads specifically bound to a bacterially expressed glutathione-S-transferase fusion protein containing the extracellular segment of PTPmu (GST/PTPmu) adsorbed to petri dishes. Covaspheres coated with the GST/PTPmu fusion protein aggregated in vitro and also bound to PTPmu expressed endogenously on MvLu cells. These results suggest that the ligand for this transmembrane PTPase is another PTPmu molecule on an adjacent cell. Thus homophilic binding interactions may be an important component of the function of PTPmu in vivo.


Glycobiology ◽  
2008 ◽  
Vol 19 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Y. K. Kim ◽  
K. R. Kim ◽  
D. G. Kang ◽  
S. Y. Jang ◽  
Y. H. Kim ◽  
...  

2009 ◽  
Vol 20 (18) ◽  
pp. 4083-4090 ◽  
Author(s):  
Pascale F. Dijkers ◽  
Patrick H. O'Farrell

Befitting oxygen's key role in life's processes, hypoxia engages multiple signaling systems that evoke pervasive adaptations. Using surrogate genetics in a powerful biological model, we dissect a poorly understood hypoxia-sensing and signal transduction system. Hypoxia triggers NO-dependent accumulation of cyclic GMP and translocation of cytoplasmic GFP-Relish (an NFκB/Rel transcription factor) to the nucleus in Drosophila S2 cells. An enzyme capable of eliminating NO interrupted signaling specifically when it was targeted to the mitochondria, arguing for a mitochondrial NO signal. Long pretreatment with an inhibitor of nitric oxide synthase (NOS), L-NAME, blocked signaling. However, addition shortly before hypoxia was without effect, suggesting that signaling is supported by the prior action of NOS and is independent of NOS action during hypoxia. We implicated the glutathione adduct, GSNO, as a signaling mediator by showing that overexpression of the cytoplasmic enzyme catalyzing its destruction, GSNOR, blocks signaling, whereas knockdown of this activity caused reporter translocation in the absence of hypoxia. In downstream steps, cGMP accumulated, and calcium-dependent signaling was subsequently activated via cGMP-dependent channels. These findings reveal the use of unconventional steps in an NO pathway involved in sensing hypoxia and initiating signaling.


2019 ◽  
Vol 223 (2) ◽  
pp. jeb212613 ◽  
Author(s):  
Emily A. W. Nadeau ◽  
Nicholas M. Teets

2019 ◽  
Vol 2019 (4) ◽  
pp. pdb.prot097485 ◽  
Author(s):  
Chengjian Li ◽  
Phillip D. Zamore

Sign in / Sign up

Export Citation Format

Share Document