homophilic binding
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 7)

H-INDEX

37
(FIVE YEARS 2)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 102
Author(s):  
Matteo Gasparotto ◽  
Yuriko Suemi Hernandez Gomez ◽  
Daniele Peterle ◽  
Alessandro Grinzato ◽  
Federica Zen ◽  
...  

Homo- and heterophilic binding mediated by the immunoglobulin (Ig)-like repeats of cell adhesion molecules play a pivotal role in cell-cell and cell-extracellular matrix interactions. L1CAM is crucial to neuronal differentiation, in both mature and developing nervous systems, and several studies suggest that its functional interactions are mainly mediated by Ig2–Ig2 binding. X-linked mutations in the human L1CAM gene are summarized as L1 diseases, including the most diagnosed CRASH neurodevelopmental syndrome. In silico simulations provided a molecular rationale for CRASH phenotypes resulting from mutations I179S and R184Q in the homophilic binding region of Ig2. A synthetic peptide reproducing such region could both mimic the neuritogenic capacity of L1CAM and rescue neuritogenesis in a cellular model of the CRASH syndrome, where the full L1CAM ectodomain proved ineffective. Presented functional evidence opens the route to the use of L1CAM-derived peptides as biotechnological and therapeutic tools.


Author(s):  
Danying Liao ◽  
Jesse Sundlov ◽  
Jieqing Zhu ◽  
Heng Mei ◽  
Yu Hu ◽  
...  

Objective: PECAM-1 (platelet endothelial cell adhesion molecule 1) is a 130 kDa member of the immunoglobulin (Ig) gene superfamily that is expressed on the surfaces of platelets and leukocytes and concentrated at the intercellular junctions of confluent endothelial cell monolayers. PECAM-1 Ig domains 1 and 2 (IgD1 and IgD2) engage in homophilic interactions that support a host of vascular functions, including support of leukocyte transendothelial migration and the maintenance of endothelial junctional integrity. The recently solved crystal structure of PECAM-1 IgD1 and IgD2 revealed a number of intermolecular interfaces predicted to play important roles in stabilizing PECAM-1/PECAM-1 homophilic interactions and in formation and maintenance of endothelial cell-cell contacts. We sought to determine whether the protein interfaces implicated in the crystal structure reflect physiologically important interactions. Approach and Results: We assessed the impact of single amino acid substitutions at the interfaces between opposing PECAM-1 molecules on homophilic binding and endothelial cell function. Substitution of key residues within the IgD1-IgD1 and IgD1-IgD2 interfaces but not those within the smaller IgD2-IgD2 interface, markedly disrupted PECAM-1 homophilic binding and its downstream effector functions, including the ability of PECAM-1 to localize at endothelial cell-cell borders, mediate the formation of endothelial tubes, and restore endothelial barrier integrity. Conclusions: Taken together, these results validate the recently described PECAM-1 IgD1/IgD2 crystal structure by demonstrating that specific residues visualized within the IgD1-IgD1 and IgD1-IgD2 interfaces of opposing molecules in the crystal are required for functionally important homophilic interactions. This information can now be exploited to modulate functions of PECAM-1 in vivo.


2021 ◽  
Author(s):  
Brandon L Neel ◽  
Collin R Nisler ◽  
Sanket Walujkar ◽  
Raul Araya-Secchi ◽  
Marcos Sotomayor

Cadherins are a superfamily of adhesion proteins involved in a variety of biological processes that include the formation of intercellular contacts, the maintenance of tissue integrity, and the development of neuronal circuits. These transmembrane proteins are characterized by ectodomains composed of a variable number of extracellular cadherin (EC) repeats that are similar but not identical in sequence and fold. E-cadherin, along with desmoglein and desmocollin proteins, are three classical-type cadherins that have slightly curved ectodomains and engage in homophilic and heterophilic interactions through an exchange of conserved tryptophan residues in their N-terminal EC1 repeat. In contrast, clustered protocadherins are straighter than classical cadherins and interact through an antiparallel homophilic binding interface that involves overlapped EC1 to EC4 repeats. Here we present molecular dynamics simulations that model the adhesive domains of these cadherins using available crystal structures, with systems encompassing up to 2.8 million atoms. Simulations of complete classical cadherin ectodomain dimers predict a two-phased elastic response to force in which these complexes first softly unbend and then stiffen to unbind without unfolding. Simulated α, β, and γ clustered protocadherin homodimers lack a two-phased elastic response, are brittle and stiffer than classical cadherins, and exhibit complex unbinding pathways that in some cases involve transient intermediates. We propose that these distinct mechanical responses are important for function, with classical cadherin ectodomains acting as molecular shock absorbers and with stiffer clustered protocadherin ectodomains facilitating overlap that favors binding specificity over mechanical resilience. Overall, our simulations provide insights into the molecular mechanics of single cadherin dimers relevant in the formation of cellular junctions essential for tissue function.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Shu Yang ◽  
Ya Zhang ◽  
Chuxuan Yang ◽  
Xuefeng Wu ◽  
Sarah Maria El Oud ◽  
...  

Hedgehog (Hh) signaling patterns embryonic tissues and contributes to homeostasis in adults. In Drosophila, Hh transport and signaling are thought to occur along a specialized class of actin-rich filopodia, termed cytonemes. Here, we report that Interference hedgehog (Ihog) not only forms a Hh receptor complex with Patched to mediate intracellular signaling, but Ihog also engages in trans-homophilic binding leading to cytoneme stabilization in a manner independent of its role as the Hh receptor. Both functions of Ihog (trans-homophilic binding for cytoneme stabilization and Hh binding for ligand sensing) involve a heparin-binding site on the first fibronectin repeat of the extracellular domain. Thus, the Ihog-Ihog interaction and the Hh-Ihog interaction cannot occur simultaneously for a single Ihog molecule. By combining experimental data and mathematical modeling, we determined that Hh-Ihog heterophilic interaction dominates and Hh can disrupt and displace Ihog molecules involved in trans-homophilic binding. Consequently, we proposed that the weaker Ihog-Ihog trans interaction promotes and stabilizes direct membrane contacts along cytonemes and that, as the cytoneme encounters secreted Hh ligands, the ligands trigger release of Ihog from trans Ihog-Ihog complex enabling transport or internalization of the Hh ligand-Ihog-Patched -receptor complex. Thus, the seemingly incompatible functions of Ihog in homophilic adhesion and ligand binding cooperate to assist Hh transport and reception along the cytonemes.


2021 ◽  
Author(s):  
Shu Yang ◽  
Ya Zhang ◽  
Chuxuan Yang ◽  
Xuefeng Wu ◽  
Sarah Maria El Oud ◽  
...  

ABSTRACTHedgehog (Hh) signaling patterns embryonic tissues and contributes to homeostasis in adults. In Drosophila, Hh transport and signaling are thought to occur along a specialized class of actin-rich filopodia, termed cytonemes. Here, we report that Interference hedgehog (Ihog) not only forms a Hh receptor complex with Patched to mediate intracellular signaling, but Ihog also engages in trans-homophilic binding leading to cytoneme stabilization in a manner independent of its role as the Hh receptor. Both functions of Ihog (trans-homophilic binding for cytoneme stabilization and Hh binding for ligand sensing) involve a region of the first fibronectin repeat of the extracellular domain. Thus, the Ihog-Ihog interaction and the Hh-Ihog interaction cannot occur simultaneously for a single Ihog molecule. By combining experimental data and mathematical modeling, we determined that Hh-Ihog heterophilic interaction dominates and Hh can disrupt and displace Ihog molecules involved in trans-homophilic binding. Consequently, we proposed that the weaker Ihog-Ihog trans interaction promotes and stabilizes direct membrane contacts along cytonemes and that, as the cytoneme encounters secreted Hh ligands, the ligands trigger release of Ihog from trans Ihog-Ihog complex enabling transport or internalization of the Hh ligand-Ihog-Patched -receptor complex. Thus, the seemingly incompatible functions of Ihog in homophilic adhesion and ligand binding cooperate to assist Hh transport and reception along the cytonemes.One-sentence summaryApparently incompatible functions of Ihog in homophilic adhesion and ligand binding cooperate in Hh transport and reception.


2020 ◽  
Vol 31 (3) ◽  
pp. 167-183 ◽  
Author(s):  
Jill B. Graham ◽  
Johan C. Sunryd ◽  
Ketan Mathavan ◽  
Emma Weir ◽  
Ida Signe Bohse Larsen ◽  
...  

Here we characterize TMTC3 as an ER, polytopic membrane protein with C-terminal luminal-facing TPRs, and an O-mannosyltransferase of E-cadherin. O-mannosylation of cadherins by TMTC3 affects cellular adherence, E-cadherin homophilic binding, and embryonic gastrulation, helping to explain the basis of a number of TMTC3-associated disease variants.


2019 ◽  
Vol 294 (33) ◽  
pp. 12339-12348 ◽  
Author(s):  
Xuefeng Wu ◽  
Ya Zhang ◽  
Kun-Han Chuang ◽  
Xudong Cai ◽  
Humna Ajaz ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Xi Peng ◽  
Francesco Emiliani ◽  
Philip M Smallwood ◽  
Amir Rattner ◽  
Hong Lei ◽  
...  

Defining protein-protein interactions (PPIs) is central to the biological sciences. Here, we present a novel platform - Affinity Capture of Polyribosomes followed by RNA sequencing (ACAPseq) - for identifying PPIs. ACAPseq harnesses the power of massively parallel RNA sequencing (RNAseq) to quantify the enrichment of polyribosomes based on the affinity of their associated nascent polypeptides for an immobilized protein ‘bait’. This method was developed and tested using neonatal mouse brain polyribosomes and a variety of extracellular domains as baits. Of 92 baits tested, 25 identified one or more binding partners that appear to be biologically relevant; additional candidate partners remain to be validated. ACAPseq can detect binding to targets that are present at less than 1 part in 100,000 in the starting polyribosome preparation. One of the observed PPIs was analyzed in detail, revealing the mode of homophilic binding for Protocadherin-9 (PCDH9), a non-clustered Protocadherin family member.


2018 ◽  
Vol 314 (3) ◽  
pp. F388-F398 ◽  
Author(s):  
Takashi Kato ◽  
Man Hagiyama ◽  
Yasutoshi Takashima ◽  
Azusa Yoneshige ◽  
Akihiko Ito

Chronic kidney disease (CKD) is an important problem throughout the world, associated with the increase of blood urea nitrogen (BUN) and serum creatinine (sCre) and with renal tubular injuries. It is crucial to elucidate the molecular mechanisms of renal injuries to identify the new therapeutics and early diagnostic methods. We focused on cell adhesion molecule-1 (CADM1) protein. CADM1, its isoform SP4, is expressed in the epithelial cells of various tissues, including renal distal tubules, localized on the lateral cell membrane, mediates cell-cell adhesion via trans-homophilic binding, and interacts with various proteins. We previously reported that its expression was downregulated by post-proteolytic cleavage (α- and β-shedding) in pulmonary diseases. To investigate whether CADM1 α-shedding occurs in human nephropathies, we performed Western blotting and immunohistochemical analysis of specimens with arterionephrosclerosis (AS) and diabetic nephropathy (DN) from autopsied kidneys. CADM1 α-shedding was induced in AS and DN kidneys and derived from the decrease in full-length CADM1 (FL-CADM1) and increase of the COOH-terminal fragment (α-CTF). In particular, the reduced FL-CADM1 level was correlated with tubular and tubulointerstitial injuries and the increases in BUN and sCre levels. Apoptosis of renal tubular epithelial cells (TECs) was promoted in both nephropathies, and it was significantly correlated with the decrease in the FL-CADM1. Furthermore, FL-CADM1 knockdown by small interfering RNA downregulated anti-apoptotic Bcl-2 protein and promoted apoptosis of cultured renal TECs. The present study suggests that the reduction of FL-CADM1 leads to renal TEC apoptosis and could exacerbate renal tubular and tubulointerstitial injuries, which contribute to the development of CKD.


Sign in / Sign up

Export Citation Format

Share Document