Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount

2014 ◽  
Vol 397 ◽  
pp. 1-9 ◽  
Author(s):  
Rebecca Bell ◽  
Caroline Holden ◽  
William Power ◽  
Xiaoming Wang ◽  
Gaye Downes
2021 ◽  
Author(s):  
Yueyang Xia ◽  
Jacob Geersen ◽  
Dirk Klaeschen ◽  
Bo Ma ◽  
Dietrich Lange ◽  
...  

Abstract. We resolve a previously unrecognized shallow subducting seamount from a re-processed multichannel seismic depth image crossing the 1994 M7.8 Java tsunami earthquake slip area. Seamount subduction is related to the uplift of the overriding plate by lateral shortening and vertical thickening, causing pronounced back-thrusting at the landward slope of the forearc high and the formation of splay faults branching off the landward flank of the subducting seamount. The location of the seamount in relation to the 1994 earthquake hypocentre and its co-seismic slip model suggests that the seamount acted as a seismic barrier to the up-dip co-seismic rupture propagation of this moderate size earthquake. The wrapping of the co-seismic slip contours around the seamount indicates that it diverted rupture propagation, documenting the control of forearc structures on seismic rupture.


Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2467-2477
Author(s):  
Yueyang Xia ◽  
Jacob Geersen ◽  
Dirk Klaeschen ◽  
Bo Ma ◽  
Dietrich Lange ◽  
...  

Abstract. We resolve a previously unrecognized shallow subducting seamount from a re-processed multichannel seismic profile crossing the 1994 Mw 7.8 Java tsunami earthquake rupture area. Seamount subduction occurs where the overriding plate experiences uplift by lateral shortening and vertical thickening. Pronounced back-thrusting at the landward slope of the forearc high and the formation of splay faults branching off the landward flank of the subducting seamount are observed. The location of the seamount in relation to the 1994 earthquake hypocentre and its co-seismic slip model suggests that the seamount acted as a seismic barrier to the up-dip co-seismic rupture propagation of this moderate-size earthquake.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Akio Katsumata ◽  
Masayuki Tanaka ◽  
Takahito Nishimiya

AbstractA tsunami earthquake is an earthquake event that generates abnormally high tsunami waves considering the amplitude of the seismic waves. These abnormally high waves relative to the seismic wave amplitude are related to the longer rupture duration of such earthquakes compared with typical events. Rapid magnitude estimation is essential for the timely issuance of effective tsunami warnings for tsunami earthquakes. For local events, event magnitude estimated from the observed displacement amplitudes of the seismic waves, which can be obtained before estimation of the seismic moment, is often used for the first tsunami warning. However, because the observed displacement amplitude is approximately proportional to the moment rate, conventional magnitudes of tsunami earthquakes estimated based on the seismic wave amplitude tend to underestimate the event size. To overcome this problem, we investigated several methods of magnitude estimation, including magnitudes based on long-period displacement, integrated displacement, and multiband amplitude distribution. We tested the methods using synthetic waveforms calculated from finite fault models of tsunami earthquakes. We found that methods based on observed amplitudes could not estimate magnitude properly, but the method based on the multiband amplitude distribution gave values close to the moment magnitude for many tsunami earthquakes. In this method, peak amplitudes of bandpass filtered waveforms are compared with those of synthetic records for an assumed source duration and fault mechanism. We applied the multiband amplitude distribution method to the records of events that occurred around the Japanese Islands and to those of tsunami earthquakes, and confirmed that this method could be used to estimate event magnitudes close to the moment magnitudes.


2009 ◽  
Vol 03 (02) ◽  
pp. 77-88 ◽  
Author(s):  
HASANUDDIN Z. ABIDIN ◽  
HERI ANDREAS ◽  
TERUYUKI KATO ◽  
TAKEO ITO ◽  
IRWAN MEILANO ◽  
...  

Along the Java trench the Australian–Oceanic plate is moving and pushing onto and subducting beneath the Java continental crust at a relative motion of about 70 mm/yr in NNE direction. This subduction-zone process imposed tectonic stresses on the fore-arc region offshore and on the land of Java, thus causing the formation of earthquake fault zones to accommodate the plate movement. Historically, several large earthquakes happened in Java, including West Java. This research use GPS surveys method to study the inter-seismic deformation of three active faults in West Java region (i.e. Cimandiri, Lembang and Baribis faults), and the co-seismic and post-seismic deformation related to the May 2006 Yogyakarta and the July 2006 South Java earthquakes. Based on GPS surveys results it was found that the area around Cimandiri, Lembang and Baribis fault zones have the horizontal displacements of about 1 to 2 cm/yr or less. Further research is however still needed to extract the real inter-seismic deformation of the faults from those GPS-derived displacements. GPS surveys have also estimated that the May 2006 Yogyakarta earthquake was caused by the sinistral movement of the (Opak) fault with horizontal co-seismic deformation that generally was less than 10 cm. The post-seismic horizontal deformation of the July 2006 South Java tsunami earthquake has also been estimated using GPS surveys data. In the first year after the earthquake (2006 to 2007), the post-seismic deformation is generally less than 5 cm; and it becomes generally less than 3 cm in the second year (2007 to 2008).


2006 ◽  
Vol 33 (24) ◽  
Author(s):  
Charles J. Ammon ◽  
Hiroo Kanamori ◽  
Thorne Lay ◽  
Aaron A. Velasco
Keyword(s):  

2021 ◽  
Author(s):  
Toshikazu Ebisuzaki

Abstract A tsunami earthquake is defined as an earthquake which induces abnormally strong tsunami waves compared with its seismic magnitude (Kanamori 1972; Kanamori and Anderson 1975; Tanioka and Seno 2001). We investigate the possibility that the surface waves (Rayleigh, Love, and tsunami waves) in tsunami earthquakes are amplified by secondly submarine landslides, induced by the liquefaction of the sea floor due to the strong vibrations of the earthquakes. As pointed by Kanamori (2004), tsunami earthquakes are significantly stronger in longer waves than 100 s and low in radiation efficiencies of seismic waves by one or two order of magnitudes. These natures are in favor of a significant contribution of landslides. The landslides can generate seismic waves with longer period with lower efficiency than the tectonic fault motions (Kanamori et al 1980; Eissler and Kanamori 1987; Hasegawa and Kanamori 1987). We further investigate the distribution of the tsunami earthquakes and found that most of their epicenters are located at the steep slopes in the landward side of the trenches or around volcanic islands, where the soft sediments layers from the landmass are nearly critical against slope failures. This distribution suggests that the secondly landslides may contribute to the tsunami earthquakes. In the present paper, we will investigate the rapture processes determined by the inversion analysis of seismic surface waves of tsunami earthquakes can be explained by massive landslides, simultaneously triggered by earthquakes in the tsunami earthquakes which took place near the trenches.


2013 ◽  
Vol 14 (9) ◽  
pp. 3436-3461 ◽  
Author(s):  
Valentí Sallarès ◽  
Adrià Meléndez ◽  
Manuel Prada ◽  
César R. Ranero ◽  
Kirk McIntosh ◽  
...  

1994 ◽  
Vol 37 (6) ◽  
Author(s):  
J. Virieux ◽  
A. Deschamps ◽  
J. Perrot ◽  
J. Campos

Recording seismic events at teleseismic distances with broadband and high dynamic range instruments provides new high-quality data that allow us to interpret in more detail the complexity of seismic rupture as well as the heterogeneous structure of the medium surrounding the source where waves are initially propagating. Wave propagation analysis is performed by ray tracing in a local cartesian coordinate system near the source and in a global spherical coordinate system when waves enter the mantle. Seismograms are constructed at each station for a propagation in a 2.5-D medium. Many phases can be included and separately analyzed; this is one of the major advantages of ray tracing compared to other wave propagation techniques. We have studied four earthquakes, the 1988 Spitak Armenia Earthquake (Ms = 6.9), the 1990 Iran earthquake (Ms = 7.7), the 1990 romanian earthquake (Ms = 5.8) and the 1992 Erzincan, Turkey earthquake (Ms = 6.8). These earthquakes exhibit in different ways the complexity of the rupture and the signature of the medium surrounding the source. The use of velocity seismograms, the time derivative of displacement, increases the difficulty of the fit between synthetic seismograms and real seismograms but provides clear evidence for a need of careful time delay estimations of the different converted phases. We find that understanding of the seismic rupture as well as the influence of the medium surrounding the source for teleseismically recorded earthquakes requires a multi-stop procedure: starting with ground displacement seismograms, one is able to give a first description of the rupture as well as of the first-order influence of the medium. Then, considering the ground velocity seismograms makes the fit more difficult to obtain but increases our sensitivity to the rupture process and early converted phases. With increasing number of worldwide broadband stations, a complex rupture description is possible independently of field observations, which can be used to check the adequacy of such complicated models.


Sign in / Sign up

Export Citation Format

Share Document