scholarly journals Ductile flow in sub-volcanic carbonate basement as the main control for edifice stability: New experimental insights

2015 ◽  
Vol 430 ◽  
pp. 533-541 ◽  
Author(s):  
Richard R. Bakker ◽  
Marie E.S. Violay ◽  
Philip M. Benson ◽  
Sergio C. Vinciguerra
Geology ◽  
2019 ◽  
Vol 47 (12) ◽  
pp. 1127-1130 ◽  
Author(s):  
Gabriel G. Meyer ◽  
Nicolas Brantut ◽  
Thomas M. Mitchell ◽  
Philip G. Meredith

Abstract The so-called “brittle-ductile transition” is thought to be the strongest part of the lithosphere, and defines the lower limit of the seismogenic zone. It is characterized not only by a transition from localized to distributed (ductile) deformation, but also by a gradual change in microscale deformation mechanism, from microcracking to crystal plasticity. These two transitions can occur separately under different conditions. The threshold conditions bounding the transitions are expected to control how deformation is partitioned between localized fault slip and bulk ductile deformation. Here, we report results from triaxial deformation experiments on pre-faulted cores of Carrara marble over a range of confining pressures, and determine the relative partitioning of the total deformation between bulk strain and on-fault slip. We find that the transition initiates when fault strength (σf) exceeds the yield stress (σy) of the bulk rock, and terminates when it exceeds its ductile flow stress (σflow). In this domain, yield in the bulk rock occurs first, and fault slip is reactivated as a result of bulk strain hardening. The contribution of fault slip to the total deformation is proportional to the ratio (σf − σy)/(σflow − σy). We propose an updated crustal strength profile extending the localized-ductile transition toward shallower regions where the strength of the crust would be limited by fault friction, but significant proportions of tectonic deformation could be accommodated simultaneously by distributed ductile flow.


2016 ◽  
Vol 10 (5) ◽  
pp. 1915-1932 ◽  
Author(s):  
Maarten Krabbendam

Abstract. Basal ice motion is crucial to ice dynamics of ice sheets. The classic Weertman model for basal sliding over bedrock obstacles proposes that sliding velocity is controlled by pressure melting and/or ductile flow, whichever is the fastest; it further assumes that pressure melting is limited by heat flow through the obstacle and ductile flow is controlled by standard power-law creep. These last two assumptions, however, are not applicable if a substantial basal layer of temperate (T ∼ Tmelt) ice is present. In that case, frictional melting can produce excess basal meltwater and efficient water flow, leading to near-thermal equilibrium. High-temperature ice creep experiments have shown a sharp weakening of a factor 5–10 close to Tmelt, suggesting standard power-law creep does not operate due to a switch to melt-assisted creep with a possible component of grain boundary melting. Pressure melting is controlled by meltwater production, heat advection by flowing meltwater to the next obstacle and heat conduction through ice/rock over half the obstacle height. No heat flow through the obstacle is required. Ice streaming over a rough, hard bed, as possibly in the Northeast Greenland Ice Stream, may be explained by enhanced basal motion in a thick temperate ice layer.


Geology ◽  
2007 ◽  
Vol 35 (8) ◽  
pp. 727 ◽  
Author(s):  
Jess King ◽  
Nigel Harris ◽  
Tom Argles ◽  
Randy Parrish ◽  
Bruce Charlier ◽  
...  

2006 ◽  
Vol 315-316 ◽  
pp. 185-189 ◽  
Author(s):  
Hui Huang ◽  
G.Q. Zhang ◽  
Y.J. Zhan ◽  
Xi Peng Xu

An experimental study was carried out to investigate the process in surface grinding of two kinds of typical granite with a brazed diamond wheel. The horizontal and vertical forces were measured to obtain the data for the tangential and vertical force components as well as specific energy. Micrograph observations on tool surface and granite surface were coupled to check the prevailing mechanisms for material removal. Although the red granite is more difficult to machine than the black granite, according to factory records, the normal and tangential force components and specific energy for red granite were lower than that for black one, which might be attributed to the high height protrusion of brazed tool and the more ductile flow occurred in the grinding arc of black granite compared to the red one.


Sign in / Sign up

Export Citation Format

Share Document