power law creep
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 23)

H-INDEX

37
(FIVE YEARS 2)

Author(s):  
D Ebenezer ◽  
SR Koteswara Rao ◽  
S Vijayan ◽  
R Rajeswari

Mg-Zn alloys are promising candidates for their application in automotive, electronics and aerospace applications. For their successful application, one of the performance parameters that needs to be evaluated is their creep behavior at elevated temperatures. Hence this paper evaluates the high temperature creep behavior of wrought ZM21 magnesium alloy by impression test The tests were performed under constant temperature and stress. A flat ended cylindrical punch was used to create impressions. The temperature was varied between 398 K and 598 K while the stresses were varied from 200 MPa to 500 MPa (normalized stress: 0.014 ≤  σimp/ G ≥ 0.032). A power-law creep deformation was assumed to calculate creep exponent and activation energy using the steady state minimum impression velocity obtained from impression tests. The creep behavior was analyzed with the help of impression creep curves and plastic deformation was analyzed with the help of micrographs. It was found that creep exponent varied between 4.5 and 6 and activation energy between 73.28 and 113.35 kJ/mol were obtained. From the study it was concluded that the creep mechanism involved was pipe-diffusion-controlled dislocation climb.


2021 ◽  
Author(s):  
Falk M. Oraschewski ◽  
Aslak Grinsted

Abstract. In the accumulation zone of glaciers and ice sheets snow is transformed into glacial ice by firn densification. Classically, this processes is assumed to solely depend on temperature and overburden pressure which is controlled by the accumulation rate. However, exceptionally thin firn layers have been observed in the high-strain shear margins of ice streams. Previously, it has been proposed that this firn thinning can be explained by an enhancement of firn densification due to the effect of strain softening inherent to power-law creep. This hypothesis has not been validated, and the greater firn densities in the presence of horizontal strain rates have not yet been reproduced by models. Here, we develop a model that corrects the firn densification rate predicted by classical, climate-forced models for the effect of strain softening. With the model it is confirmed that strain softening dominates the firn densification process when high strain rates are present. Firn densities along a cross section of the North-East Greenland ice stream (NEGIS) are reproduced with good agreement, validating the accuracy of the developed model. Finally, it is shown that strain softening has significant implications for ice core dating and that it considerably affects the firn properties over wide areas of the polar ice sheet, even at low strain rates. Therefore, we suggest that, besides temperature and accumulation rate, horizontal strain rates should generally be considered as a forcing parameter in firn densification modelling.


2021 ◽  
pp. 1-14
Author(s):  
Elizabeth M. Morris ◽  
Lynn N. Montgomery ◽  
Robert Mulvaney

Abstract This paper presents a physics-based macroscale model for the densification of dry snow which provides for a smooth transition between densification by grain-boundary sliding (stage 1) and densification by power-law creep (stage 2). The model uses established values of the stage 1 and 2 densification rates away from the transition zone and two transition parameters with a simple physical basis: the transition density and the half-width of the transition zone. It has been calibrated using density profiles from the SUMup database and physically based expressions for the transition parameters have been derived. The transition model produces better predictions of the depth of the nominal bubble close-off horizon than the Herron and Langway model, both in its classical form and in a recent version with re-optimised densification rates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Li ◽  
Yang Bu ◽  
Chendong Yang ◽  
Jizeng Wang

Hepatic steatosis is associated with various liver diseases. The main pathological feature of steatosis is the excessive lipid accumulation. Ultrasound has been extensively used for the diagnosis of hepatic steatosis. However, most ultrasound-based non-invasive methods are still not accurate enough for cases with light lipid infiltration. One important reason is that the extent to which lipid infiltration may affect mechanical properties of hepatocytes remains unknown. In this work, we used atomic force microscope and in vitro dose-dependent lipid deposition model to detect the quantitative changes of mechanical properties under different degrees of steatosis in a single-cell level. The results show that hepatic cells with lipid deposition can be treated as linear viscoelastic materials with the power law creep compliance and relaxation modulus. Further analysis showed that even slight accumulation of lipid can lead to measurable decrease of stiffness and increased fluidity in liver cells. The accurate detection of viscoelastic properties of hepatocytes and the analysis methods may provide novel insights into hepatic steatosis grading, especially in the very early stage with reversible liver lesion. The application of viscoelasticity index for grading fat deposition might be a new detection indicator in future clinical diagnosis.


Author(s):  
Yupeng Zhang ◽  
Alan Needleman

Load and hold conical indentation responses calculated for materials having creep stress exponents of 1.15, 3.59 and 6.60 are regarded as input ‘experimental’ responses. A Bayesian-type statistical approach (Zhang et al. 2019 J. Appl. Mech. 86 , 011002 ( doi:10.1115/1.4041352 )) is used to infer power-law creep parameters, the creep exponent and the associated pre-exponential factor, from noise-free as well as noise-contaminated indentation data. A database for the Bayesian-type analysis is created using finite-element calculations for a coarse set of parameter values with interpolation used to create the refined database used for parameter identification. Uniaxial creep and stress relaxation responses using the identified creep parameters provide a very good approximation to those of the ‘experimental’ materials with stress exponents of 1.15 and 3.59. The sensitivity to noise increases with increasing stress exponent. The uniaxial creep response is more sensitive to the accuracy of the predictions than the uniaxial stress relaxation response. Good agreement with the indentation response does not guarantee good agreement with the uniaxial response. If the noise level is sufficiently small, the model of Bower et al. (1993 Proc. R. Soc. Lond. A 441 , 97–124 ()) provides a good fit to the ‘experimental’ data for all values of creep stress exponent considered, while the model of Ginder et al. (2018 J. Mech. Phys. Solids 112 , 552–562 ()) provides a good fit for a creep stress exponent of 1.15.


2021 ◽  
Author(s):  
Falk M. Oraschewski

The densification of polar firn that is subjected to horizontal strain rates is studied. A model for the enhanced densification of the firn by strain softening is developed. Strain softening describes an acceleration of power-law creep in the presence of high horizontal strain rates, which was suggested to explain the occurrence of exceptionally thin firn in the shear margins of ice streams. With the model the effect of strain softening is compared to other strain-driven densification mechanisms, like pure shear and strain heating, and to potential variations of temperature and accumulation rate. Thereby, strain softening is identified to dominate firn densification at high strain rates. A recorded density profile along a cross-section of the North-East Greenland ice stream (NEGIS) is reproduced with the presented model with good agreement in the shear margins. There, the thinning of the firn correlates with the location and magnitude of the shear margin troughs, which indicates that their formation is caused by strain softening. In regions with low strain rates the model overestimates the densification rate. Because of a particularly strong sensitivity of the model to low strain rates and the presence of non-zero strain rates on large parts of the Greenland Ice Sheet (GrIS), it is suggested that empirically tuned densification models already implicitly consider moderate horizontal strain rates. Besides the temperature and the accumulation rate, the effective horizontal strain rate is therefore proposed as a third forcing parameter, that needs to be considered in the development of a physics-based firn densification model.


2021 ◽  
Author(s):  
Falk Oraschewski ◽  
Aslak Grinsted

<p>Most classical firn densification models merely consider temperature and accumulation rate as variable input parameters. However, in locations with high horizontal strain rates, such as the shear margins of ice streams, a reduced firn thickness can be observed. This is explained by an enhancement of power-law creep due to the effect of strain softening, which is not yet captured by existing firn models. We present a model extension that corrects the densification rate, predicted by any classical, climate-forced firn model, for the effect of strain softening caused by horizontal strain rates. With the presented model firn densities measured along a cross-section of the North-East Greenland ice stream (NEGIS) are reproduced with good agreement, validating the accuracy of the developed model. The results further indicate the general importance of considering strain rates in firn densification modeling and pave the way for the development of a firn model that inherently uses temperature, accumulation rate and horizontal strain rates as forcing parameters.</p>


Sign in / Sign up

Export Citation Format

Share Document