scholarly journals Corrigendum to “Seismic structure off the Kii Peninsula, Japan, deduced from passive- and active-source seismographic data” [Earth Planet. Sci. Lett. 461 (2017) 163–175]

Author(s):  
Yojiro Yamamoto ◽  
Tsutomu Takahashi ◽  
Yuka Kaiho ◽  
Koichiro Obana ◽  
Ayako Nakanishi ◽  
...  
2017 ◽  
Vol 461 ◽  
pp. 163-175 ◽  
Author(s):  
Yojiro Yamamoto ◽  
Tsutomu Takahashi ◽  
Yuka Kaiho ◽  
Koichiro Obana ◽  
Ayako Nakanishi ◽  
...  

2020 ◽  
Vol 224 (3) ◽  
pp. 1930-1944 ◽  
Author(s):  
E J Rindraharisaona ◽  
F Tilmann ◽  
X Yuan ◽  
J Dreiling ◽  
J Giese ◽  
...  

SUMMARY We investigate the upper mantle seismic structure beneath southern Madagascar and infer the imprint of geodynamic events since Madagascar’s break-up from Africa and India and earlier rifting episodes. Rayleigh and Love wave phase velocities along a profile across southern Madagascar were determined by application of the two-station method to teleseismic earthquake data. For shorter periods (<20 s), these data were supplemented by previously published dispersion curves determined from ambient noise correlation. First, tomographic models of the phase velocities were determined. In a second step, 1-D models of SV and SH wave velocities were inverted based on the dispersion curves extracted from the tomographic models. As the lithospheric mantle is represented by high velocities we identify the lithosphere–asthenosphere boundary by the strongest negative velocity gradient. Finally, the radial anisotropy (RA) is derived from the difference between the SV and SH velocity models. An additional constraint on the lithospheric thickness is provided by the presence of a negative conversion seen in S receiver functions, which results in comparable estimates under most of Madagascar. We infer a lithospheric thickness of 110−150 km beneath southern Madagascar, significantly thinner than beneath the mobile belts in East Africa (150−200 km), where the crust is of comparable age and which were located close to Madagascar in Gondwanaland. The lithospheric thickness is correlated with the geological domains. The thinnest lithosphere (∼110 km) is found beneath the Morondava basin. The pre-breakup Karoo failed rifting, the rifting and breakup of Gondwanaland have likely thinned the lithosphere there. The thickness of the lithosphere in the Proterozoic terranes (Androyen and Anosyen domains) ranges from 125 to 140 km, which is still ∼30 km thinner than in the Mozambique belt in Tanzania. The lithosphere is the thickest beneath Ikalamavony domain (Proterozoic) and the west part of the Antananarivo domain (Archean) with a thickness of ∼150 km. Below the eastern part of Archean domain the lithosphere thickness reduces to ∼130 km. The lithosphere below the entire profile is characterized by positive RA. The strongest RA is observed in the uppermost mantle beneath the Morondava basin (maximum value of ∼9 per cent), which is understandable from the strong stretching that the basin was exposed to during the Karoo and subsequent rifting episode. Anisotropy is still significantly positive below the Proterozoic (maximum value of ∼5 per cent) and Archean (maximum value of ∼6 per cent) domains, which may result from lithospheric extension during the Mesozoic and/or thereafter. In the asthenosphere, a positive RA is observed beneath the eastern part Morondava sedimentary basin and the Proterozoic domain, indicating a horizontal asthenospheric flow pattern. Negative RA is found beneath the Archean in the east, suggesting a small-scale asthenospheric upwelling, consistent with previous studies. Alternatively, the relatively high shear wave velocity in the asthenosphere in this region indicate that the negative RA could be associated to the Réunion mantle plume, at least beneath the volcanic formation, along the eastern coast.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Saeko Kita

AbstractI relocated the hypocenters of the 2018 M6.7 Hokkaido Eastern Iburi earthquake and its surrounding area, using a three-dimensional seismic structure, the double-difference relocation method, and the JMA earthquake catalog. After relocation, the focal depth of the mainshock became 35.4 km. As previous studies show, in south-central Hokkaido, the Hidaka collision zone is formed, and anomalous deep and thickened forearc crust material is subducting at depths of less than 70 km. The mainshock and its aftershocks are located at depths of approximately 10 to 40 km within the lower crust of the anomalous deep and thickened curst near the uppermost mantle material intrusions in the northwestern edge of this Hidaka collision zone. Like the two previous large events, the aftershocks of this event incline steeply eastward and appear to be distributed in the deeper extension of the Ishikari-teichi-toen fault zone. The highly inclined fault in the present study is consistent with a fault model by a geodetic analysis with InSAR. The aftershocks at depths of 10 to 20 km are located at the western edge of the high-attenuation (low-Qp) zone. These kinds of relationships between hypocenters and materials are the same as the 1970 and 1982 events in the Hidaka collision zone. The anomalous large focal depths of these large events compared with the average depth limit of inland earthquakes in Japan could be caused by the locally lower temperature in south-central Hokkaido. This event is one of the approximately M7 large inland earthquakes that occurred repeatedly at a recurrence interval of approximately 40 years and is important in the collision process in the Hidaka collision zone.


2021 ◽  
pp. 1-9
Author(s):  
Stephen A. Veitch ◽  
Marianne Karplus ◽  
Galen Kaip ◽  
Lucia F. Gonzalez ◽  
Jason M. Amundson ◽  
...  

Abstract Lemon Creek Glacier, a temperate valley glacier in the Juneau Icefield of Southeast Alaska, is the site of long running (>60 years) glaciological studies. However, the most recent published estimates of its thickness and subglacial topography come from two ~50 years old sources that are not in agreement and do not account for the effects of years of negative mass balance. We collected a 1-km long active-source seismic line on the upper section of the glacier parallel and near to the centerline of the glacier, roughly straddling the equilibrium-line altitude. We used these data to perform joint reflection-refraction velocity modeling and reflection imaging of the glacier bed. We find that this upper section of Lemon Creek Glacier is as much as 150 m (~65%) thicker than previously suggested with a large overdeepening in an area previously believed to have a uniform thickness. Our results lead us to reinterpret the impact of basal motion on ice flow and have a significant impact on expectations of subglacial hydrology. We suggest that further efforts to develop a whole-glacier model of subglacial topography are necessary to support studies that require accurate models of ice thickness and subglacial topography.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Haiou Li ◽  
Xiwei Xu ◽  
Wentao Ma ◽  
Ronghua Xie ◽  
Jingli Yuan ◽  
...  

Three-dimensional P wave velocity models under the Zipingpu reservoir in Longmenshan fault zone are obtained with a resolution of 2 km in the horizontal direction and 1 km in depth. We used a total of 8589 P wave arrival times from 1014 local earthquakes recorded by both the Zipingpu reservoir network and temporary stations deployed in the area. The 3-D velocity images at shallow depth show the low-velocity regions have strong correlation with the surface trace of the Zipingpu reservoir. According to the extension of those low-velocity regions, the infiltration depth directly from the Zipingpu reservoir itself is limited to 3.5 km depth, while the infiltration depth downwards along the Beichuan-Yingxiu fault in the study area is about 5.5 km depth. Results show the low-velocity region in the east part of the study area is related to the Proterozoic sedimentary rocks. The Guanxian-Anxian fault is well delineated by obvious velocity contrast and may mark the border between the Tibetan Plateau in the west and the Sichuan basin in the east.


Sign in / Sign up

Export Citation Format

Share Document