scholarly journals Velocity structure and radial anisotropy of the lithosphere in southern Madagascar from surface wave dispersion

2020 ◽  
Vol 224 (3) ◽  
pp. 1930-1944 ◽  
Author(s):  
E J Rindraharisaona ◽  
F Tilmann ◽  
X Yuan ◽  
J Dreiling ◽  
J Giese ◽  
...  

SUMMARY We investigate the upper mantle seismic structure beneath southern Madagascar and infer the imprint of geodynamic events since Madagascar’s break-up from Africa and India and earlier rifting episodes. Rayleigh and Love wave phase velocities along a profile across southern Madagascar were determined by application of the two-station method to teleseismic earthquake data. For shorter periods (<20 s), these data were supplemented by previously published dispersion curves determined from ambient noise correlation. First, tomographic models of the phase velocities were determined. In a second step, 1-D models of SV and SH wave velocities were inverted based on the dispersion curves extracted from the tomographic models. As the lithospheric mantle is represented by high velocities we identify the lithosphere–asthenosphere boundary by the strongest negative velocity gradient. Finally, the radial anisotropy (RA) is derived from the difference between the SV and SH velocity models. An additional constraint on the lithospheric thickness is provided by the presence of a negative conversion seen in S receiver functions, which results in comparable estimates under most of Madagascar. We infer a lithospheric thickness of 110−150 km beneath southern Madagascar, significantly thinner than beneath the mobile belts in East Africa (150−200 km), where the crust is of comparable age and which were located close to Madagascar in Gondwanaland. The lithospheric thickness is correlated with the geological domains. The thinnest lithosphere (∼110 km) is found beneath the Morondava basin. The pre-breakup Karoo failed rifting, the rifting and breakup of Gondwanaland have likely thinned the lithosphere there. The thickness of the lithosphere in the Proterozoic terranes (Androyen and Anosyen domains) ranges from 125 to 140 km, which is still ∼30 km thinner than in the Mozambique belt in Tanzania. The lithosphere is the thickest beneath Ikalamavony domain (Proterozoic) and the west part of the Antananarivo domain (Archean) with a thickness of ∼150 km. Below the eastern part of Archean domain the lithosphere thickness reduces to ∼130 km. The lithosphere below the entire profile is characterized by positive RA. The strongest RA is observed in the uppermost mantle beneath the Morondava basin (maximum value of ∼9 per cent), which is understandable from the strong stretching that the basin was exposed to during the Karoo and subsequent rifting episode. Anisotropy is still significantly positive below the Proterozoic (maximum value of ∼5 per cent) and Archean (maximum value of ∼6 per cent) domains, which may result from lithospheric extension during the Mesozoic and/or thereafter. In the asthenosphere, a positive RA is observed beneath the eastern part Morondava sedimentary basin and the Proterozoic domain, indicating a horizontal asthenospheric flow pattern. Negative RA is found beneath the Archean in the east, suggesting a small-scale asthenospheric upwelling, consistent with previous studies. Alternatively, the relatively high shear wave velocity in the asthenosphere in this region indicate that the negative RA could be associated to the Réunion mantle plume, at least beneath the volcanic formation, along the eastern coast.

2018 ◽  
Author(s):  
Caroline Beghein

It is strongly debated whether the interface between the lithosphere and underlying as- thenosphere is a temperature-dependent rheological transition, as expected in a thermal convection system, or additionally affected by the presence of melts and/or fluids. Pre- vious surface wave studies of Pacific oceanic lithosphere have found that shear velocity and azimuthal anisotropy vary with seafloor crustal age as expected for a thermal control; however radial anisotropy does not. Various thermo-mechanical models have been pro- posed to explain this disparate behaviour. Nonetheless, it is unclear how robust the surface wave constraints are, and this is what we test in this study. We apply a Bayesian model space search approach to three published Pacific surface-wave dispersion datasets, two phase-velocity and one combined phase- and group-velocity set, and determine various proxies for the depth of the lithosphere-asthenosphere boundary (LAB) and their uncer- tainties based on the velocity and radial anisotropy model distributions obtained. In their overall character and pattern with age, the velocity models from different datasets are consistent with each other, although they differ in their values of LAB depths. Uncertainties are substantial (as much as 20 km on LAB depths) and the addition of group-velocity data does not reduce them. Radial anisotropy structures differ even in pattern and display no obvious age dependence. However, given the uncertainties, we cannot exclude that radial anisotropy, azimuthal anisotropy, and velocity models actually reflect compatible, age-dependent, LAB depth estimates. The velocity LAB trends are most like those ex- pected for half-space cooling, because velocity differences persist at old ages, below the depth of common plate cooling models. Any direct signature of sub-ridge melt would be too small-scale to be resolved by these data. However, the velocity-increasing effects of dehydration and depletion due to melting below the ridge could explain why LAB proxy depths tend to a minimum of ∼60 km below young ocean floor.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Takeshi Akuhara ◽  
Kazuo Nakahigashi ◽  
Masanao Shinohara ◽  
Tomoaki Yamada ◽  
Hajime Shiobara ◽  
...  

AbstractThe evolution history of the Sea of Japan back-arc basin remains under debate, involving the opening of sub-basins such as the Japan and Yamato Basins. Detailed knowledge of the lithospheric structure will provide the key to understanding tectonic history. This study identifies the lithosphere–asthenosphere boundary (LAB) beneath the Sea of Japan back-arc basin using S-receiver functions (S-RFs). The study area, including the Japan and Yamato Basins, has been instrumented with broadband ocean-bottom seismometers (OBSs). S-RFs from these OBSs show negative Sp phases preceding the direct S arrivals, suggesting the LAB. The S-RFs also show abnormally reduced amplitudes. For further qualitative interpretation of these findings, we conduct transdimensional Bayesian inversion for S-wave velocity models. This less-subjective Bayesian approach clarifies that the low-velocity seafloor sediments and damped deconvolution contribute to the amplitude reduction, illuminating the necessity of such considerations for similar receiver function works. Inverted velocity structures show a sharp velocity decrease at the mantle depths, which we consider the LAB. The obtained LAB depths vary among sites: ~ 45 km beneath the Japan and Yamato Basins and ~ 70 km beneath the Yamato Rise, a bathymetric high between the two basins. The thick lithosphere beneath the Yamato Rise most likely reflects its continental origin. However, the thickness is still thin compared to that of eastern Asia, suggesting lithosphere extension by rifting. Notably, the Japan and Yamato Basins show a comparable lithospheric thickness, although the crustal thickness beneath the Yamato Basin is known to be anomalously thick. This consistency in the lithospheric thickness implies that both basins undergo similar back-arc opening processes.


2021 ◽  
Author(s):  
Takeshi Akuhara ◽  
Kazuo Nakahigashi ◽  
Masanao Shinohara ◽  
Tomoaki Yamada ◽  
Hajime Shiobara ◽  
...  

Abstract The evolution history of the Sea of Japan back-arc basin remains under debate, involving the opening of sub-basins such as the Japan and Yamato Basins. Detailed knowledge of the lithospheric structure will provide the key to understanding tectonic history. This study identifies the lithosphere–asthenosphere boundary (LAB) beneath the Sea of Japan back-arc basin using S-receiver functions (S-RFs). The study area, including the Japan and Yamato Basins, has been instrumented with broadband ocean-bottom seismometers (OBSs). S-RFs from these OBSs show negative Sp phases preceding the direct S arrivals, suggesting the LAB. The S-RFs also show abnormally reduced amplitudes. For further qualitative interpretation of these findings, we conduct transdimensional Bayesian inversion for S-wave velocity models. This less-subjective Bayesian approach clarifies that the low-velocity seafloor sediments and damped deconvolution contribute to the amplitude reduction, illuminating the necessity of such considerations for similar receiver function works. Inverted velocity structures show a sharp velocity decrease at the mantle depths, which we consider the LAB. The obtained LAB depths vary among sites: ~45 km beneath the Japan and Yamato Basins and ~70 km beneath the Yamato Rise, a bathymetric high between the two basins. The thick lithosphere beneath the Yamato Rise most likely reflects its continental origin. However, the thickness is still thin compared to that of eastern Asia, suggesting lithosphere extension by rifting. Notably, the Japan and Yamato Basins show a comparable lithospheric thickness, although the crustal thickness beneath the Yamato Basin is known to be anomalously thick. This consistency in the lithospheric thickness implies that both basins undergo similar back-arc opening processes.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. KS41-KS55 ◽  
Author(s):  
Andrea Licciardi ◽  
Nicola Piana Agostinetti

Teleseismic receiver functions (RFs) were used to investigate the seismic structure of the southern margin of the Dublin Basin, a potential geothermal site. Through an inversion-based approach, the elastic properties and seismic anisotropy of sedimentary basin units were examined, using data from a linear array of closely spaced seismic stations. Our results were compared with sonic logs and lithostratigraphies from two nearby boreholes, NGE1 and NGE2 and colocated active seismic data. Including a high-frequency RF (up to 8 Hz) allowed us to compute S-wave velocity models with a vertical resolution [Formula: see text]. The results indicated the presence of a subvertical lateral discontinuity in [Formula: see text], in correspondence with the main basin-bounding fault (Blackrock-Newcastle Fault [BNF]). North of this discontinuity, a shallow low-velocity layer thickens (from 0.7 to 1.0 km thick) toward the inner basin, in agreement with the geometry of the shallowest reflector found by active seismics. A good correlation was also found between the sonic log at NGE1 and our velocity model. Station DB02 showed an increase in [Formula: see text] at a depth of approximately 0.7 km and a decrease in [Formula: see text] at approximately 1.4 km in depth. Two velocity jumps with matching polarities were also observed in the NGE1 sonic log at the contact between the Upper and Lower Calp formations (positive jump, 688 m deep), and between a calcarenite and a sandstone layers (negative jump, 1337 m deep). Moreover, the main velocity contrasts in our model agree with the major lithostratigraphic boundaries inferred from borehole-drilled samples. Two juxtaposed anisotropic layers are identified close to the BNF. Directions of the slow axis of anisotropy are consistent with the borehole structural data. From these observations, the presence of aligned open cracks within the sandstones, possibly fluid-filled, was inferred up to a depth of 2.3 km in the vicinity of the BNF.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4658
Author(s):  
Artur Guzy ◽  
Wojciech T. Witkowski

Land subsidence caused by groundwater withdrawal induced by mining is a relatively unknown phenomenon. This is primarily due to the small scale of such movements compared to the land subsidence caused by deposit extraction. Nonetheless, the environmental impact of drainage-related land subsidence remains underestimated. The research was carried out in the “Bogdanka” coal mine in Poland. First, the historical impact of mining on land subsidence and groundwater head changes was investigated. The outcomes of these studies were used to construct the influence method model. With field data, our model was successfully calibrated and validated. Finally, it was used for land subsidence estimation for 2030. As per the findings, the field of mining exploitation has the greatest land subsidence. In 2014, the maximum value of the phenomenon was 0.313 cm. However, this value will reach 0.364 m by 2030. The spatial extent of land subsidence caused by mining-induced drainage extends up to 20 km beyond the mining area’s boundaries. The presented model provided land subsidence patterns without the need for a complex numerical subsidence model. As a result, the method presented can be effectively used for land subsidence regulation plans considering the impact of mining on the aquifer system.


2020 ◽  
Vol 224 (3) ◽  
pp. 1684-1704
Author(s):  
Alexandra Mauerberger ◽  
Valérie Maupin ◽  
Ólafur Gudmundsson ◽  
Frederik Tilmann

SUMMARY We use the recently deployed ScanArray network of broad-band stations covering most of Norway and Sweden as well as parts of Finland to analyse the propagation of Rayleigh waves in Scandinavia. Applying an array beamforming technique to teleseismic records from ScanArray and permanent stations in the study region, in total 159 stations with a typical station distance of about 70 km, we obtain phase velocities for three subregions, which collectively cover most of Scandinavia (excluding southern Norway). The average phase dispersion curves are similar for all three subregions. They resemble the dispersion previously observed for the South Baltic craton and are about 1 per cent slower than the North Baltic shield phase velocities for periods between 40 and 80 s. However, a remarkable sin(1θ) phase velocity variation with azimuth is observed for periods >35 s with a 5 per cent deviation between the maximum and minimum velocities, more than the overall lateral variation in average velocity. Such a variation, which is incompatible with seismic anisotropy, occurs in northern Scandinavia and southern Norway/Sweden but not in the central study area. The maximum and minimum velocities were measured for backazimuths of 120° and 300°, respectively. These directions are perpendicular to a step in the lithosphere–asthenosphere boundary (LAB) inferred by previous studies in southern Norway/Sweden, suggesting a relation to large lithospheric heterogeneity. In order to test this hypothesis, we carried out 2-D full-waveform modeling of Rayleigh wave propagation in synthetic models which incorporate a steep gradient in the LAB in combination with a pronounced reduction in the shear velocity below the LAB. This setup reproduces the observations qualitatively, and results in higher phase velocities for propagation in the direction of shallowing LAB, and lower ones for propagation in the direction of deepening LAB, probably due to the interference of forward scattered and reflected surface wave energy with the fundamental mode. Therefore, the reduction in lithospheric thickness towards southern Norway in the south, and towards the Atlantic ocean in the north provide a plausible explanation for the observed azimuthal variations.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Haiou Li ◽  
Xiwei Xu ◽  
Wentao Ma ◽  
Ronghua Xie ◽  
Jingli Yuan ◽  
...  

Three-dimensional P wave velocity models under the Zipingpu reservoir in Longmenshan fault zone are obtained with a resolution of 2 km in the horizontal direction and 1 km in depth. We used a total of 8589 P wave arrival times from 1014 local earthquakes recorded by both the Zipingpu reservoir network and temporary stations deployed in the area. The 3-D velocity images at shallow depth show the low-velocity regions have strong correlation with the surface trace of the Zipingpu reservoir. According to the extension of those low-velocity regions, the infiltration depth directly from the Zipingpu reservoir itself is limited to 3.5 km depth, while the infiltration depth downwards along the Beichuan-Yingxiu fault in the study area is about 5.5 km depth. Results show the low-velocity region in the east part of the study area is related to the Proterozoic sedimentary rocks. The Guanxian-Anxian fault is well delineated by obvious velocity contrast and may mark the border between the Tibetan Plateau in the west and the Sichuan basin in the east.


Geophysics ◽  
2008 ◽  
Vol 73 (2) ◽  
pp. S47-S61 ◽  
Author(s):  
Paul Sava ◽  
Oleg Poliannikov

The fidelity of depth seismic imaging depends on the accuracy of the velocity models used for wavefield reconstruction. Models can be decomposed in two components, corresponding to large-scale and small-scale variations. In practice, the large-scale velocity model component can be estimated with high accuracy using repeated migration/tomography cycles, but the small-scale component cannot. When the earth has significant small-scale velocity components, wavefield reconstruction does not completely describe the recorded data, and migrated images are perturbed by artifacts. There are two possible ways to address this problem: (1) improve wavefield reconstruction by estimating more accurate velocity models and image using conventional techniques (e.g., wavefield crosscorrelation) or (2) reconstruct wavefields with conventional methods using the known background velocity model but improve the imaging condition to alleviate the artifacts caused by the imprecise reconstruction. Wedescribe the unknown component of the velocity model as a random function with local spatial correlations. Imaging data perturbed by such random variations is characterized by statistical instability, i.e., various wavefield components image at wrong locations that depend on the actual realization of the random model. Statistical stability can be achieved by preprocessing the reconstructed wavefields prior to the imaging condition. We use Wigner distribution functions to attenuate the random noise present in the reconstructed wavefields, parameterized as a function of image coordinates. Wavefield filtering using Wigner distribution functions and conventional imaging can be lumped together into a new form of imaging condition that we call an interferometric imaging condition because of its similarity to concepts from recent work on interferometry. The interferometric imaging condition can be formulated both for zero-offset and for multioffset data, leading to robust, efficient imaging procedures that effectively attenuate imaging artifacts caused by unknown velocity models.


2020 ◽  
Vol 63 (Vol 63 (2020)) ◽  
Author(s):  
Radia Kherchouche ◽  
Merzouk Ouyed ◽  
Abdelkrim Aoudia ◽  
Billel Mellouk ◽  
Ahmed Saadi

•  In this work, we study the crust and the uppermost mantle structure beneath the Sicily Channel, by applying the ambient noise and earthquake tomography method. After computing cross-correlation of the continuous ambient noise signals and processing the earthquake data, we extracted 104 group velocity and 68 phase velocity dispersion curves corresponding to the fundamental mode of the Rayleigh waves. We computed the average velocity of those dispersion curves to obtain tomographic maps at periods ranging from 5 s to 40 s for the group velocities and from 10 s to 70 for the phase velocities. We inverted group and phase speeds to get the shear-wave velocity structure from the surface down to 100 km depth with a lateral resolution of about 200 km. The resulted velocity models reveal a thin crust with thickness value of 15 km beneath the southern part of the Tyrrhenian basin and a thickness value of 20 km beneath Mount Etna. The obtained thickness values are well correlated with the reported extension of the Tyrrhenian lithosphere due to the past earthquake tomography subduction and rollback of the Ionian slab beneath the Calabrian Arc. The crustal thickness increases and reaches values between 28 and 30 km beneath the Tunisian coasts and Sicily Channel. The S-wave models reveal also the presence of high velocity body beneath the island of Sicily. This finding can be interpreted as the presence of the Ionian slab subducting beneath the Calabrian Arc. Another high velocity body is observed beneath the southern part of the Tyrrhenian basin, it might be interpreted as the presence of fragments of the African continental lithosphere beneath the  Tyrrhenian basin.


Sign in / Sign up

Export Citation Format

Share Document