Ecosystem change and carbon cycle perturbation preceded the end-Triassic mass extinction

2021 ◽  
Vol 576 ◽  
pp. 117180
Author(s):  
Ekaterina Larina ◽  
David J. Bottjer ◽  
Frank A. Corsetti ◽  
Alyson M. Thibodeau ◽  
William M. Berelson ◽  
...  
2019 ◽  
Vol 116 (45) ◽  
pp. 22500-22504 ◽  
Author(s):  
Michael J. Henehan ◽  
Andy Ridgwell ◽  
Ellen Thomas ◽  
Shuang Zhang ◽  
Laia Alegret ◽  
...  

Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we document a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth system modeling, indicate that a partial ∼50% reduction in global marine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario reconciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which marine life imprints its isotopic signal onto the geological record.


2018 ◽  
Vol 178 ◽  
pp. 92-104 ◽  
Author(s):  
Mariachiara Zaffani ◽  
Flavio Jadoul ◽  
Manuel Rigo
Keyword(s):  

2019 ◽  
Vol 116 (30) ◽  
pp. 14813-14822 ◽  
Author(s):  
Daniel H. Rothman

The history of the carbon cycle is punctuated by enigmatic transient changes in the ocean’s store of carbon. Mass extinction is always accompanied by such a disruption, but most disruptions are relatively benign. The less calamitous group exhibits a characteristic rate of change whereas greater surges accompany mass extinctions. To better understand these observations, I formulate and analyze a mathematical model that suggests that disruptions are initiated by perturbation of a permanently stable steady state beyond a threshold. The ensuing excitation exhibits the characteristic surge of real disruptions. In this view, the magnitude and timescale of the disruption are properties of the carbon cycle itself rather than its perturbation. Surges associated with mass extinction, however, require additional inputs from external sources such as massive volcanism. Surges are excited when CO2 enters the oceans at a flux that exceeds a threshold. The threshold depends on the duration of the injection. For injections lasting a time ti≳10,000 y in the modern carbon cycle, the threshold flux is constant; for smaller ti, the threshold scales like ti−1. Consequently the unusually strong but geologically brief duration of modern anthropogenic oceanic CO2 uptake is roughly equivalent, in terms of its potential to excite a major disruption, to relatively weak but longer-lived perturbations associated with massive volcanism in the geologic past.


2020 ◽  
Author(s):  
Yu Pei ◽  
Jan-Peter Duda ◽  
Joachim Reitner

AbstractThe Permian-Triassic mass extinction included a potentially catastrophic decline of biodiversity, but ecosystem change across this event remains poorly characterized. Here we reconstruct sedimentary factories and ecosystem change across the Permian-Triassic Critical Interval (P-TrCI) in the Xiakou area (South China). Six microfacies (MF) were classified. The succession begins with a eukaryote-controlled carbonate factory (MF-1) that passes upward into an organomineralization-dominated carbonate factory (MF-2–3). Organic-rich marls atop these units reflect carbonate factory collapse (MF-4). Organomineralization-driven carbonate formation restarts prior to the Permian-Triassic boundary (MF-5) and subsequently develops into a mixed carbonate factory where organomineralization and biomineralization are almost equally important (MF-6). MF-1 reflects oxygenated shallow water environments. In contrast, MF-2–6 were all deposited in somewhat deeper environments, some of which episodically exhibited elevated salinities, oxygen depletion, and, possibly, euxinic conditions. Our results demonstrate that distinct changes in carbonate production styles, biodiversity, and environmental conditions are not synchronous at Xiakou. Furthermore, the Xiakou record is strikingly different to that of other localities, even from the same area (e.g., the Global Stratotype Section and Point section at Meishan). Together, these findings highlight the enormous complexity of the P-TrCI and calls simplified views of the Permian-Triassic mass extinction into question.


2020 ◽  
Author(s):  
Didac Pascual Descarrega ◽  

<p>Arctic and subarctic ecosystems are undergoing substantial changes in response to climatic and other anthropogenic drivers, and these changes are likely to continue over this Century. Due to the strong linkages between the biotic (vegetation and carbon cycle) and abiotic (permafrost, hydrology and local climate) ecosystem components, the total magnitude of these changes result from multiple interacting effects that can enhance or counter the direct effects. In some cases, short-lived extreme events can override climate-driven long-term trends. The field measurements can mostly tackle individual drivers rather than the interactions between them. Currently, a comprehensive assessment of the drivers of different changes and the magnitude of their impact on subarctic ecosystems is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years and encompasses the 12% of all published papers and the 19% of all study citations across the Arctic. In this study, we summarize and rank the direct and indirect drivers of ecosystem change in the Torneträsk area, and propose future research priorities identified to improve future predictions of ecosystem change. First, we identified the direct and indirect changing drivers and the multiple related processes and feedbacks impacting the local climate, permafrost, hydrology, vegetation, and the carbon cycle based on the existing literature. Subsequently, an Expert Elicitation with the participation of 27 leading scientists was used to rank the short- (2020-2040) and long-term (2040-2100) future impact of these drivers according to their opinions on the relative importance and novelty. These two key evaluation matrices form the basis for identifying the current research priorities for subarctic regions. The relatively small size of the Torneträsk area, its great biological and geomorphological complexity, and its unique datasets is a microcosm of the subarctic and the rapidly transforming Arctic ecosystems that can help understand the ongoing processes and future ecosystem changes at a larger circumpolar-scale. This in turn will provide the basis for future mitigation and adaptation plans needed in a changing climate.</p>


2012 ◽  
Vol 13 (9) ◽  
Author(s):  
Aviv Bachan ◽  
Bas van de Schootbrugge ◽  
Jens Fiebig ◽  
Christopher A. McRoberts ◽  
Gloria Ciarapica ◽  
...  
Keyword(s):  

2008 ◽  
Vol 9 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
B. van de Schootbrugge ◽  
J. L. Payne ◽  
A. Tomasovych ◽  
J. Pross ◽  
J. Fiebig ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guoshan Li ◽  
Wei Liao ◽  
Sheng Li ◽  
Yongbiao Wang ◽  
Zhongping Lai

AbstractWidespread ocean anoxia has been proposed to cause biotic mass extinction across the Permian–Triassic (P–Tr) boundary. However, its temporal dynamics during this crisis period are unclear. The Liangfengya section in the South China Block contains continuous marine sedimentary and fossil records. Two pulses of biotic extinction and two mass extinction horizons (MEH 1 & 2) near the P–Tr boundary were identified and defined based on lithology and fossils from the section. The data showed that the two pulses of extinction have different environmental triggers. The first pulse occurred during the latest Permian, characterized by disappearance of algae, large foraminifers, and fusulinids. Approaching the MEH 1, multiple layers of volcanic clay and yellowish micritic limestone occurred, suggesting intense volcanic eruptions and terrigenous influx. The second pulse occurred in the earliest Triassic, characterized by opportunist-dominated communities of low diversity and high abundance, and resulted in a structural marine ecosystem change. The oxygen deficiency inferred by pyrite framboid data is associated with biotic declines above the MEH 2, suggesting that the anoxia plays an important role.


Sign in / Sign up

Export Citation Format

Share Document