scholarly journals Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact

2019 ◽  
Vol 116 (45) ◽  
pp. 22500-22504 ◽  
Author(s):  
Michael J. Henehan ◽  
Andy Ridgwell ◽  
Ellen Thomas ◽  
Shuang Zhang ◽  
Laia Alegret ◽  
...  

Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we document a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth system modeling, indicate that a partial ∼50% reduction in global marine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario reconciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which marine life imprints its isotopic signal onto the geological record.

2021 ◽  
Vol 118 (37) ◽  
pp. e2014701118
Author(s):  
Ying Cui ◽  
Mingsong Li ◽  
Elsbeth E. van Soelen ◽  
Francien Peterse ◽  
Wolfram M. Kürschner

The end-Permian mass extinction event (∼252 Mya) is associated with one of the largest global carbon cycle perturbations in the Phanerozoic and is thought to be triggered by the Siberian Traps volcanism. Sizable carbon isotope excursions (CIEs) have been found at numerous sites around the world, suggesting massive quantities of 13C-depleted CO2 input into the ocean and atmosphere system. The exact magnitude and cause of the CIEs, the pace of CO2 emission, and the total quantity of CO2, however, remain poorly known. Here, we quantify the CO2 emission in an Earth system model based on new compound-specific carbon isotope records from the Finnmark Platform and an astronomically tuned age model. By quantitatively comparing the modeled surface ocean pH and boron isotope pH proxy, a massive (∼36,000 Gt C) and rapid emission (∼5 Gt C yr−1) of largely volcanic CO2 source (∼−15%) is necessary to drive the observed pattern of CIE, the abrupt decline in surface ocean pH, and the extreme global temperature increase. This suggests that the massive amount of greenhouse gases may have pushed the Earth system toward a critical tipping point, beyond which extreme changes in ocean pH and temperature led to irreversible mass extinction. The comparatively amplified CIE observed in higher plant leaf waxes suggests that the surface waters of the Finnmark Platform were likely out of equilibrium with the initial massive centennial-scale release of carbon from the massive Siberian Traps volcanism, supporting the rapidity of carbon injection. Our modeling work reveals that carbon emission pulses are accompanied by organic carbon burial, facilitated by widespread ocean anoxia.


2021 ◽  
Vol 7 (25) ◽  
pp. eabe6530
Author(s):  
Annemarie E. Pickersgill ◽  
Darren F. Mark ◽  
Martin R. Lee ◽  
Simon P. Kelley ◽  
David W. Jolley

Both the Chicxulub and Boltysh impact events are associated with the K-Pg boundary. While Chicxulub is firmly linked to the end-Cretaceous mass extinction, the temporal relationship of the ~24-km-diameter Boltysh impact to these events is uncertain, although it is thought to have occurred 2 to 5 ka before the mass extinction. Here, we conduct the first direct geochronological comparison of Boltysh to the K-Pg boundary. Our 40Ar/39Ar age of 65.39 ± 0.14/0.16 Ma shows that the impact occurred ~0.65 Ma after the mass extinction. At that time, the climate was recovering from the effects of the Chicxulub impact and Deccan trap flood volcanism. This age shows that Boltysh has a close temporal association with the Lower C29n hyperthermal recorded by global sediment archives and in the Boltysh crater lake sediments. The temporal coincidence raises the possibility that even a small impact event could disrupt recovery of the Earth system from catastrophic events.


2020 ◽  
Author(s):  
Georg Feulner ◽  
Julia Brugger ◽  
Matthias Hofmann ◽  
Stefan Petri

<p>Among the "big five" mass-extinction events during the Phanerozoic, the end-Cretaceous extinction 66 million years ago is particularly well known because it marks the demise of the non-avian dinosaurs. Evidence for the Chicxulub impact as the primary cause of this mass extinction has been accumulating over the past four decades, but there are still many open questions regarding the detailed course of events.</p><p>Building on our earlier modelling results demonstrating strong global cooling due to sulfate aerosols formed in the wake of the Chicxulub impact (Brugger, Feulner & Petri 2017, Geophys. Res. Lett., 44:419-427), we here explore the response of the ocean in more detail. Specifically, we added a marine biogeochemistry module to a coupled atmosphere-ocean model to investigate the effects of the impact on ocean geochemistry and primary productivity.</p><p>We find that the formation of stratospheric sulfate aerosols leads to a marked decrease in annual global mean surface air temperatures by at least 26°C in the coldest year after the impact, returning to pre-impact temperatures after about one century. The strong surface cooling induces vigorous ocean mixing that leads to changes in oxygen distributions and nutrient availability. Due to the darkness, marine net primary productivity essentially shuts down in the first years after the impact. Once the light returns, however, we find a significant increase in primary productivity caused by a surge in nutrient availability, both due to upwelling in the ocean and delivery by the impactor. These strong perturbations of the marine biosphere further support the notion that the impact played a decisive role in the end-Cretaceous mass extinction.</p>


2010 ◽  
Vol 365 (1558) ◽  
pp. 3765-3778 ◽  
Author(s):  
Jeremy B. C. Jackson

Major macroevolutionary events in the history of the oceans are linked to changes in oceanographic conditions and environments on regional to global scales. Even small changes in climate and productivity, such as those that occurred after the rise of the Isthmus of Panama, caused major changes in Caribbean coastal ecosystems and mass extinctions of major taxa. In contrast, massive influxes of carbon at the end of the Palaeocene caused intense global warming, ocean acidification, mass extinction throughout the deep sea and the worldwide disappearance of coral reefs. Today, overfishing, pollution and increases in greenhouse gases are causing comparably great changes to ocean environments and ecosystems. Some of these changes are potentially reversible on very short time scales, but warming and ocean acidification will intensify before they decline even with immediate reduction in emissions. There is an urgent need for immediate and decisive conservation action. Otherwise, another great mass extinction affecting all ocean ecosystems and comparable to the upheavals of the geological past appears inevitable.


2020 ◽  
Author(s):  
Andrew J. Wiltshire ◽  
Eleanor J. Burke ◽  
Sarah E. Chadburn ◽  
Chris D. Jones ◽  
Peter M. Cox ◽  
...  

Abstract. Understanding future changes in the terrestrial carbon cycle is important for reliable projections of climate change and impacts on ecosystems. It is known that nitrogen could limit plants' response to increased atmospheric carbon dioxide and is therefore important to include in Earth System Models. Here we present the implementation of the terrestrial nitrogen cycle in the JULES land surface model (JULES-CN). Two versions are discussed – the one implemented within the UK Earth System Model (UKESM1) which has a bulk soil biogeochemical model and a development version which resolves the soil biogeochemistry with depth. The nitrogen cycle is based on the existing carbon cycle in the model. It represents all the key terrestrial nitrogen processes in an efficient way. Biological fixation and nitrogen deposition are external inputs, and loss occurs via leaching and a bulk gas loss parameterisation. Nutrient limitation reduces carbon-use efficiency (CUE – ratio of net to gross primary productivity) and can slow soil decomposition. We show that ecosystem level limitation of net primary productivity by nitrogen is consistent with observational estimates and that simulated carbon and nitrogen pools and fluxes are comparable to the limited available observations. The impact of N limitation is most pronounced in northern mid-latitudes. The introduction of a nitrogen cycle improves the representation of interannual variability of global net ecosystem exchange which was much too pronounced in the carbon cycle only versions of JULES (JULES-C). It also reduces the CUE and alters its response over the twentieth century and limits the CO2-fertilisation effect, such that the simulated current day land carbon sink is reduced by about 0.5 Pg C yr−1. The inclusion of a prognostic land nitrogen scheme marks a step forward in functionality and realism for the JULES and UKESM models.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alexandra Schoenle ◽  
Manon Hohlfeld ◽  
Karoline Hermanns ◽  
Frédéric Mahé ◽  
Colomban de Vargas ◽  
...  

AbstractHeterotrophic protists (unicellular eukaryotes) form a major link from bacteria and algae to higher trophic levels in the sunlit ocean. Their role on the deep seafloor, however, is only fragmentarily understood, despite their potential key function for global carbon cycling. Using the approach of combined DNA metabarcoding and cultivation-based surveys of 11 deep-sea regions, we show that protist communities, mostly overlooked in current deep-sea foodweb models, are highly specific, locally diverse and have little overlap to pelagic communities. Besides traditionally considered foraminiferans, tiny protists including diplonemids, kinetoplastids and ciliates were genetically highly diverse considerably exceeding the diversity of metazoans. Deep-sea protists, including many parasitic species, represent thus one of the most diverse biodiversity compartments of the Earth system, forming an essential link to metazoans.


Sign in / Sign up

Export Citation Format

Share Document