micritic limestone
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 1)

Geologija ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 173-188
Author(s):  
Luka GALE ◽  
Duje KUKOČ ◽  
Boštjan ROŽIČ ◽  
Anja VIDERVOL

The uppermost Ladinian to Lower Jurassic Zatrnik Formation is the lithostratigraphic unit of the Mesozoic deeper marine Bled Basin. The uppermost part of the Zatrnik Formation and the transition into the overlying Ribnica Breccia was logged at the Zajamniki mountain pasture on the Pokljuka mountain plateau in the Julian Alps. The lowermost part the section belongs to the “classical” Zatrnik Formation and is dominated by beige micritic limestone and fine-grained calcarenite. Foraminifers Siphovalvulina, ?Everticyclammina, ?Mesoendothyra and ?Pseudopfenderina are present, indicating Early Jurassic age. The beige limestone is followed by light pink limestone of the uppermost Zatrnik Formation. Slumps are common in this interval, and crinoids are abundant. Alongside some species already present in beds lower in the succession, Meandrovoluta asiagoensis Fugagnoli & Rettori, Trocholina sp., Valvulinidae, small Textulariidae, Lagenida, and small ?Ophthalmidium alsooccur in this interval. Resedimented limestone predominates through the studied part of the Zatrnik Formation, indicating deposition on the slope or at the foot of the slope of the basin. The switch to crinoid-rich facies within the slumped interval of the Zatrnik Formation may reflect accelerated subsidence of the margins of the Julian Carbonate Platform in the Pliensbachian. The Zatrnik Formation is followed by the formation of the Pliensbachian (?) Ribnica Breccia. Impregnations of ferromanganese oxides, violet colour, and an increase in clay content are characteristic. The foraminiferal assemblage consists of Lenticulina, small elongated Lagenida, and epistominids. Individual beds of the Ribnica Breccia were deposited via debris flows. Enrichments in ferromanganese oxides point to slower sedimentation.


2021 ◽  
pp. 104502
Author(s):  
Grégory Ballas ◽  
Flavia Girard ◽  
Yannick Caniven ◽  
Roger Soliva ◽  
Bernard Célérier ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Pingping Li ◽  
Jinbao Duan ◽  
Zhongzhen Cheng ◽  
Huayao Zou

For strata that have experienced continual burial in the early stage and uplift in the late stage, the present-day temperature is lower than the maximum burial temperature (MBT), which is a key parameter for studying the hydrocarbon generation history of source rocks in petroliferous basins. In this paper, a new method for reconstructing the MBT is proposed based on the solid-state reordering model of carbonate clumped isotopes (Δ47). The MBT reconstructed using the Δ47 was compared with the MBT constrained using the traditional Easy%Ro model. The clumped isotope temperature (TΔ47) of the Permian micritic limestone from the Xibeixiang outcrop (about 62°C) is much higher than its initial formation temperature (20–25°C), suggesting that the limestone experienced partial solid-state reordering during the late burial process. The MBT of the calcite obtained from the solid-state reordering model is 139–147°C, which is quite similar to the MBT determined using the Easy%Ro model (139.5–147.5°C). TΔ47 of the Permian and Triassic limestone and calcite cements in the Puguang gas field are 150–180°C, while TΔ47 of the micritic dolostone is about 70°C, suggesting that the Δ47 of the limestone and calcite cements experienced complete solid-state reordering and the dolostone only experienced partial solid-state reordering. The MBT of the dolomite determined using the solid-state reordering model is 200–220°C, which is also similar to the MBT determined using the Easy%Ro model (202–227°C). Therefore, the case studies from the Sichuan Basin suggest that Δ47 can be used to reconstruct the MBT of ancient carbonate strata lacking vitrinite and detrital zircon data. However, different types of carbonate samples should be used to reconstruct the MBT for strata that have experienced different temperature histories. Micritic limestone and very finely crystallized dolostone can be used to reconstruct the MBT of strata that have experienced MBTs of <150–200°C and >200–250°C, respectively.


Stratigraphy ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 139-151
Author(s):  
Muhammad Riaz ◽  
Tehseen Zafar ◽  
Khalid Latif ◽  
Enzhao Xiao ◽  
Shahid Ghazi

ABSTRACT: TheCambrian strata at the northwestern margin of the North China Platform in InnerMongolia hold thick oolitic-grain bank deposits.Generally, the strata are dominated by calcareous mudstone of shelf facies in the lower part, micritic limestone consisting of deep to middle ramp facies in the middle part, and oolitic limestone encompassing shallow ramp to grain bank facies in the upper part of each formation. The shelf and deep ramp facies are the result of relative sea-level rise, while oolitic limestones developed in response to relative sea-level fall. Microscopically, the studied ooids are represented by radial crystal structures and concentric laminations with or without cores, single crystal or neomorphosed ooids, and highly bored ooids. The size andmorphology of the ooids indicate a two-fold mechanical influence of microbes; constructive in the Miaolingian and destructive in the Furongian ooids. Based on these observations, it can be inferred that microbes (predominantly composed of filamentous fossils of cyanobacteria) excreted extracellular polymeric substances (EPS) to develop multiple bacterial biofilms microbial mats. The subsequent decay of the EPS through sulfate reducing bacteria most likely caused precipitation around these ooids. The depositional style of ooids occupying the upper parts of the formations, and their possible genesis from microbes provide clue for regional correlation, as well as affirm biological control in the formation of ooids.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guoshan Li ◽  
Wei Liao ◽  
Sheng Li ◽  
Yongbiao Wang ◽  
Zhongping Lai

AbstractWidespread ocean anoxia has been proposed to cause biotic mass extinction across the Permian–Triassic (P–Tr) boundary. However, its temporal dynamics during this crisis period are unclear. The Liangfengya section in the South China Block contains continuous marine sedimentary and fossil records. Two pulses of biotic extinction and two mass extinction horizons (MEH 1 & 2) near the P–Tr boundary were identified and defined based on lithology and fossils from the section. The data showed that the two pulses of extinction have different environmental triggers. The first pulse occurred during the latest Permian, characterized by disappearance of algae, large foraminifers, and fusulinids. Approaching the MEH 1, multiple layers of volcanic clay and yellowish micritic limestone occurred, suggesting intense volcanic eruptions and terrigenous influx. The second pulse occurred in the earliest Triassic, characterized by opportunist-dominated communities of low diversity and high abundance, and resulted in a structural marine ecosystem change. The oxygen deficiency inferred by pyrite framboid data is associated with biotic declines above the MEH 2, suggesting that the anoxia plays an important role.


2019 ◽  
Vol 486 (1) ◽  
pp. 149-162 ◽  
Author(s):  
Sabina Kramar ◽  
Nina Žbona ◽  
Mojca Bedjanič ◽  
Ana Mladenović ◽  
Boštjan Rožič

AbstractDrenov Grič black limestone is considered to be one of the most beautiful Slovenian natural stones due to its black colour interwoven with white veins. Over the centuries, it has been extracted from two major quarries located west of Ljubljana. One of these quarries has been declared a valuable natural feature of national importance and is protected as a natural monument. This well-stratified, Triassic (Carnian) micritic limestone occurs in 10–80 cm thick beds with thin marl interlayers. The limestone occasionally contains abundant fossil bivalves, gastropods and ostracods. It is relatively rich in carbonaceous and bituminous organic matter, which is responsible for the black colour of the stone. The stone has been widely used in Slovenian monuments. Many indoor and outdoor architectural elements have been constructed using this limestone, particularly during the Baroque period, which was known for its extensive use of black limestones in other European countries as well. The most significant use of this limestone has been recorded in sculpted portals and altars. Some important buildings, which were decorated utilizing this stone, have been declared cultural monuments of local or national importance. Use of this limestone was also documented in other European countries (Italy, Austria, Serbia) and worldwide (USA). When exposed to climatic influences, chromatic and salt weathering are recognized as the main deterioration phenomena for this limestone when used in monuments.


2017 ◽  
Vol 68 (6) ◽  
pp. 543-561 ◽  
Author(s):  
Boštjan Rožič ◽  
Tea Kolar Jurkovšek ◽  
Petra Žvab Rožič ◽  
Luka Gale

AbstractIn the Alpine Realm the Early Jurassic is characterized by the disintegration and partial drowning of vast platform areas. In the eastern part of the Southern Alps (present-day NW Slovenia), the Julian Carbonate Platform and the adjacent, E-W extending Slovenian Basin underwent partial disintegration, drowning and deepening from the Pliensbachian on, whereas only nominal environmental changes developed on the large Dinaric (Friuli, Adriatic) Carbonate Platform to the south (structurally part of the Dinarides). These events, however, were preceded by an earlier - and as yet undocumented extensional event - that took place near the Triassic/Jurassic boundary. This paper provides evidence of an accelerated subsidence from four selected areas within the Slovenian Basin, which show a trend of eastwardly-decreasing deformation. In the westernmost (Mrzli vrh) section - the Upper Triassic platform-margin - massive dolomite is overlain by the earliest Jurassic toe-of-slope carbonate resediments and further, by basin-plain micritic limestone. Further east (Perbla and Liščak sections) the Triassic-Jurassic transition interval is marked by an increase in resedimented carbonates. We relate this to the increasing inclination and segmentation of the slope and adjacent basin floor. The easternmost (Mt. Porezen) area shows a rather monotonous, latest Triassic-Early Jurassic basinal sedimentation. However, changes in the thickness of the Hettangian-Pliensbachian Krikov Formation point to a tilting of tectonic blocks within the basin area. Lateral facies changes at the base of the formation indicate that the tilting occurred at and/or shortly after the Triassic/Jurassic boundary


2015 ◽  
Vol 319 ◽  
pp. 124-133 ◽  
Author(s):  
Jino Park ◽  
Jeong-Hyun Lee ◽  
Jongsun Hong ◽  
Suk-Joo Choh ◽  
Dong-Chan Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document