Oxygen isotopic alteration rate of continental crust recorded by detrital zircon and its implication for deep-time weathering

Author(s):  
Gaojun Li ◽  
Ruiyu Yang ◽  
Zhewen Xu ◽  
Jens Hartmann ◽  
David W. Hedding ◽  
...  
2020 ◽  
Author(s):  
Inês Pereira ◽  
Craig D. Storey ◽  
Robin Strachan ◽  
Hugo Moreira ◽  
James Darling ◽  
...  

<p>Plate tectonics is responsible for shaping the Earth’s surface, influencing the geological, hydrological and atmospheric cycles. However, there is no consensus on when plate tectonics initiated: was it fully operational during the Archean or did it not develop until the Proterozoic?</p><p>Much of what is currently known about the secular evolution of Earth’s continental crust and its links to plate tectonics has been recovered from detrital minerals. This is related to the incomplete rock record; the detrital record allows access to information from eroded and unexposed terrains. Most studies have relied on the detrital zircon record, but it is still unclear if the coincidence in age peaks with periods of supercontinent assembly reflects episodic continental growth or bias due to selective preservation of new crust within collisional orogenic belts. Furthermore, because zircon mostly grows in high-temperature conditions, it mostly calibrates magmatic cycles. To understand the evolution of plate tectonics and to assess its influence on continental crust preservation, we developed a new proxy, relevant to a range of metamorphic conditions, including HP-LT.</p><p>We investigate the U-Pb distribution ages of detrital rutile, from a range of modern stream sediments and siliciclastic units at sub-amphibolite facies metamorphic grade. Rutile mostly forms in collisional orogens and, by comparison with the zircon record, we can test the existence of a preservation bias. Zircon and rutile age distributions from our sample sets show a significant correlation, both peaks and troughs, that can only be reconciled if the detrital zircon record reflects a preservation bias that occurred during supercontinent assembly.</p><p>We further present new U-Pb and trace element data from detrital rutile within two clastic sedimentary units, preserved at sub-greenschist facies conditions in NW Scotland. These are the Torridon (Tonian) and the Ardvreck (Cambrian) groups, whose detrital zircon ages span a significant period between 3 and 1 Ga. By applying Zr-in-rutile thermometry and comparing it to the preserved metamorphic record, we show that both low and high dT/dP conditions can be inferred since at least 2.1 Ga.</p><p>Combining the existence of paired metamorphism up to 2.1 Ga with the periodic preservation of the continental crust throughout most of the Earth’s history implies that one-sided subduction, a hallmark of plate tectonics, has operated since at least the late Paleoproterozoic, and that supercontinent assembly during and after this period has been driven by plate tectonic mechanisms.</p>


2020 ◽  
Vol 538 ◽  
pp. 116206 ◽  
Author(s):  
Sameer Ranjan ◽  
Dewashish Upadhyay ◽  
Kamal Lochan Pruseth ◽  
Jayanta K. Nanda

2020 ◽  
Author(s):  
Zhigang Zeng ◽  
Zuxing Chen ◽  
Yuxiang Zhang

Abstract Episodic supercontinental amalgamation has profoundly influenced the evolution of the geosphere, hydrosphere, atmosphere and biosphere. However, the timing of supercontinent formation has mainly been constrained by the global age spectra of detrital zircon. Here, we show that the zircons in back-arc volcanic rocks not only reflect the evolution of local magmatism but also contain a record of global continental amalgamation events. We found that the young (<100 ka) zircons in volcanic rocks from the Okinawa Trough have old (108 Ma to 2.7 Ga) inherited zircon, which were captured as the magma ascended through the rifting continental crust. Moreover, the ages of the inherited zircons correspond to five supercontinent amalgamation events. Specifically, the Archaean inherited zircons, which have positive ɛHf(t) and low δ18O values, correspond to the formation of juvenile global continental crust. In contrast, the negative ɛHf(t) and high δ18O values of post-Archaean inherited zircons indicate that their parental magma contained recycled, old crust due to the enhanced crustal thickening and crust-mantle interactions during supercontinent assembly. Therefore, inherited zircons in back-arc volcanic rocks not only reflect the evolution of local magmatism but also contain a record of global supercontinental amalgamation events.


Geology ◽  
2021 ◽  
Author(s):  
Shanan E. Peters ◽  
Craig R. Walton ◽  
Jon M. Husson ◽  
Daven P. Quinn ◽  
Oliver Shorttle ◽  
...  

Rock quantity and age are fundamental features of Earth’s crust that pertain to many problems in geoscience. Here we combine new estimates of igneous rock area in continental crust from the Macrostrat database (https://macrostrat.org/) with a compilation of detrital zircon ages in order to investigate rock cycling and crustal growth. We find that there is little or no decrease in igneous rock area with increasing rock age. Instead, igneous rock area in North America exhibits four distinct Precambrian peaks, remains low through the Neoproterozoic, and then increases only modestly toward the recent. Peaks in Precambrian detrital zircon age frequency distributions align broadly with peaks in igneous rock area, regardless of grain depositional age. However, detrital zircon ages do underrepresent a Neoarchean peak in igneous rock area; young grains and ca. 1.1 Ga grains are also overrepresented relative to igneous area. Together, these results suggest that detrital zircon age distributions contain signatures of continental denudation and sedimentary cycling that are decoupled from the cycling of igneous source rocks. Models of continental crustal evolution that incorporate significant early increase in volume and increased sedimentation in the Phanerozoic are well supported by these data.


Geosphere ◽  
2021 ◽  
Author(s):  
Charles Verdel ◽  
Matthew J. Campbell ◽  
Charlotte M. Allen

Hafnium (Hf) isotope composition of zircon has been integrated with U-Pb age to form a long-term (&gt;4 b.y.) record of the evolution of the crust. In contrast, trace element compositions of zircon are most commonly utilized in local- or regional-scale petrological studies, and the most noteworthy applications of trace element studies of detrital zircon have been in “fingerprinting” potential source lithologies. The extent to which zircon trace element compositions varied globally over geological time scales (as, for example, zircon U-Pb age abundance, O isotope composition, and Hf isotope composition seem to have varied) has been little explored, and it is a topic that is well suited to the large data sets produced by detrital zircon studies. In this study we present new detrital zircon U-Pb ages and trace element compositions from a continent-scale basin system in Australia (the Centralian Superbasin) that bear directly on the Proterozoic history of Australia and which may be applicable to broader interpretations of plate-tectonic processes in other regions. U-Pb ages of detrital zircon in the Centralian Superbasin are dominated by populations of ca. 1800, 1600, 1200, and 600 Ma, and secular variations of zircon Hf isotope ratios are correlated with some trace element parameters between these major age populations. In particular, elevated εHf(i) (i.e., radiogenic “juvenile” Hf isotope composition) of detrital zircon in the Centralian Superbasin tends to correspond with relatively high values of Yb/U, Ce anomaly, and Lu/Nd (i.e., depletion of light rare earth elements). These correlations seem to be fundamentally governed by three related factors: elemental compatibility in the continental crust versus mantle, the thickness of continental crust, and the contributions of sediment to magmas. Similar trace element versus εHf(i) patterns among a global zircon data set suggest broad applicability. One particularly intriguing aspect of the global zircon data set is a late Neoproterozoic to Cambrian period during which both zircon εHf(i) and Yb/U reached minima, marking an era of anomalous zircon geochemistry that was related to significant contributions from old continental crust.


Terra Nova ◽  
2012 ◽  
Vol 24 (3) ◽  
pp. 189-198 ◽  
Author(s):  
Flavien Choulet ◽  
Dominique Cluzel ◽  
Michel Faure ◽  
Wei Lin ◽  
Bo Wang ◽  
...  

2021 ◽  
Author(s):  
Dongchuan Jian ◽  
Simon Williams ◽  
Shan Yu ◽  
Guochun Zhao

&lt;p&gt;Full-plate reconstructions describe the history of both past continental motions and how plate boundaries have evolved to accommodate these motions. The fluxes of material into and out of the mantle at plate boundaries is thought to deeply influence the evolution of deep Earth structure, surface environments and biological systems through deep time. Traditionally, plate tectonic reconstructions have relied on geophysical data from the oceans, which provides details of how Pangea broke apart (since ca. 200 Myr) while paleomagnetism is the primary quantitative constraint prior to Pangea formation. However, these data do not directly constrain the extent of subduction zones or other plate boundaries, so reconstructing the past plate configurations of past supercontinents must rely on alternative methods. One source of data that can resolve this problem is to use observations from detrital zircons. Previous studies have proposed classification schemes to determine tectonic settings where samples were deposited, based on the different characteristic shapes of detrital zircon age spectra found in convergent, collisional and extensional settings.&lt;/p&gt;&lt;p&gt;Here, we investigate the applicability of this method to test and refine global full-plate tectonic reconstructions in deep time, using a published database of zircon ages. We first use reconstructions for relatively recent times (&lt;100 Ma), where reconstructions are reasonable well constrained, to evaluate the effectiveness of the classification method. For older times, where uncertainties in the reconstructions are far larger, we can use the results to discriminate between competing models. We analysed the proximity between reconstructed plate boundaries and zircon sample sites assigned to different tectonic classifications, and found that the classification method does well (~64&amp;#65293;79% success depending on distance threshold used) in distinguishing convergent settings. The ability of the classification to define extensional settings such as rift basins is less clear, though samples in this class do lie preferentially further from convergent settings. Based on these insights, we apply the method to evaluate full-plate reconstructions for the Neoproterozoic as well as other competing models for the configuration of Rodinia.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document