Augmentation of transient stability margin based on rapid assessment of rate of change of kinetic energy

2016 ◽  
Vol 140 ◽  
pp. 588-596 ◽  
Author(s):  
Ahmed A. Al-Taee ◽  
Majid A. Al-Taee ◽  
Waleed Al-Nuaimy
Author(s):  
Majli Nema Hawas

The Rate of Change Kinetic Energy (RACKE) method achieves considerable reduction in computing time by virtue of the way that it does not need the solution of system equation beyond fault clearing time. In RACKE method the machine which tends to lose synchronism can be defined as that which has the largest negation RACKE value. The injection of the brake ought to be achieved when RACKE of the machine liable to be unstable reaches its maximum negative value. Elimination happens when RACKE of the machine is zero and disturbance angular velocity passes through zero changing sign from positive to negative. To defining the instant of injection and elimination of brake, RACKE method can be used to investigate the transient stability margin of a power system through evaluation of RACKE value at the instant of fault clearance. The simulation demonstrates that the applying of a braking resistor at the terminal of each of the machines, pulling of synchronism, simultaneously brings the system into stable trajectory. It is clear from the results obtained that dynamic braking depending on the RACKE criterion for insertion and removal of the brake gives excellent results in an enhancement of transient stability margin.


2021 ◽  
Vol 13 (12) ◽  
pp. 6953
Author(s):  
Yixing Du ◽  
Zhijian Hu

Data-driven methods using synchrophasor measurements have a broad application prospect in Transient Stability Assessment (TSA). Most previous studies only focused on predicting whether the power system is stable or not after disturbance, which lacked a quantitative analysis of the risk of transient stability. Therefore, this paper proposes a two-stage power system TSA method based on snapshot ensemble long short-term memory (LSTM) network. This method can efficiently build an ensemble model through a single training process, and employ the disturbed trajectory measurements as the inputs, which can realize rapid end-to-end TSA. In the first stage, dynamic hierarchical assessment is carried out through the classifier, so as to screen out credible samples step by step. In the second stage, the regressor is used to predict the transient stability margin of the credible stable samples and the undetermined samples, and combined with the built risk function to realize the risk quantification of transient angle stability. Furthermore, by modifying the loss function of the model, it effectively overcomes sample imbalance and overlapping. The simulation results show that the proposed method can not only accurately predict binary information representing transient stability status of samples, but also reasonably reflect the transient safety risk level of power systems, providing reliable reference for the subsequent control.


Author(s):  
Ewa Jarosz ◽  
Hemantha W. Wijesekera ◽  
David W. Wang

AbstractVelocity, hydrographic, and microstructure observations collected under moderate to high winds, large surface waves, and significant ocean-surface heat losses were utilized to examine coherent velocity structures (CVS) and turbulent kinetic energy (TKE) budget in the mixed layer on the outer shelf in the northern Gulf of Mexico in February 2017. The CVS exhibited larger downward velocities in downweling regions and weaker upward velocities in broader upwelling regions, elevated vertical velocity variance, vertical velocity maxima in the upper part of the mixed layer, and phasing of crosswind velocities relative to vertical velocities near the base of the mixed layer. Temporal scales ranged from 10 min to 40 min and estimated lateral scales ranged from 90 m to 430 m, which were 1.5 – 6 times larger than the mixed layer depth. Nondimensional parameters, Langmuir and Hoenikker numbers, indicated that plausible forcing mechanisms were surface-wave driven Langmuir vortex and destabilizing surface buoyancy flux. The rate of change of TKE, shear production, Stokes production, buoyancy production, vertical transport of TKE, and dissipation in the TKE budget were evaluated. The shear and Stokes productions, dissipation, and vertical transport of TKE were the dominant terms. The buoyancy production term was important at the sea surface, but it decreased rapidly in the interior. A large imbalance term was found under the unstable, high wind, and high-sea state conditions. The cause of this imbalance cannot be determined with certainty through analyses of the available observations; however, our speculation is that the pressure transport is significant under these conditions.


Sign in / Sign up

Export Citation Format

Share Document