In-car sound analysis and driving speed estimation using sounds with different frequencies as cues

2012 ◽  
Vol 42 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Edward Yung-nian Wang ◽  
Eric Min-yang Wang
Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 265
Author(s):  
Sotirios Kontogiannis ◽  
Anestis Kastellos ◽  
George Kokkonis ◽  
Theodosios Gkamas ◽  
Christos Pikridas

Accidents in highway tunnels involving trucks carrying flammable cargoes can be dangerous, needing immediate confrontation to detect and safely evacuate the trapped people to lead them to the safety exits. Unfortunately, existing sensing technologies fail to detect and track trapped persons or moving vehicles inside tunnels in such an environment. This paper presents a distributed Bluetooth system architecture that uses detection equipment following a MIMO approach. The proposed equipment uses two long-range Bluetooth and one BLE transponder to locate vehicles and trapped people in motorway tunnels. Moreover, the detector’s parts and distributed architecture are analytically described, along with interfacing with the authors’ resources management system implementation. Furthermore, the authors also propose a speed detection process, based on classifier training, using RSSI input and speed calculations from the tunnel inductive loops as output, instead of the Friis equation with Kalman filtering steps. The proposed detector was experimentally placed at the Votonosi tunnel of the EGNATIA motorway in Greece, and its detection functionality was validated. Finally, the detector classification process accuracy is evaluated using feedback from the existing tunnel inductive loop detectors. According to the evaluation process, classifiers based on decision trees or random forests achieve the highest accuracy.


Author(s):  
Thyago Leite de Vasconcelos Lima ◽  
Julio César da Silva ◽  
José Anselmo Lucena ◽  
Filipe Vidal Souto ◽  
Thaís Christine Borges da Silva ◽  
...  

2008 ◽  
Vol 128 (2) ◽  
pp. 125-130
Author(s):  
Kan Akatsu ◽  
Nobuhiro Mitomo ◽  
Shinji Wakui

2014 ◽  
Vol 42 (1) ◽  
pp. 2-15
Author(s):  
Johannes Gültlinger ◽  
Frank Gauterin ◽  
Christian Brandau ◽  
Jan Schlittenhard ◽  
Burkhard Wies

ABSTRACT The use of studded tires has been a subject of controversy from the time they came into market. While studded tires contribute to traffic safety under severe winter conditions by increasing tire friction on icy roads, they also cause damage to the road surface when running on bare roads. Consequently, one of the main challenges in studded tire development is to reduce road wear while still ensuring a good grip on ice. Therefore, a research project was initiated to gain understanding about the mechanisms and influencing parameters involved in road wear by studded tires. A test method using the institute's internal drum test bench was developed. Furthermore, mechanisms causing road wear by studded tires were derived from basic analytical models. These mechanisms were used to identify the main parameters influencing road wear by studded tires. Using experimental results obtained with the test method developed, the expected influences were verified. Vehicle driving speed and stud mass were found to be major factors influencing road wear. This can be explained by the stud impact as a dominant mechanism. By means of the test method presented, quantified and comparable data for road wear caused by studded tires under controllable conditions can be obtained. The mechanisms allow predicting the influence of tire construction and variable operating conditions on road wear.


Sign in / Sign up

Export Citation Format

Share Document