In-situ growth of MnO2 nanorods forest on carbon textile as efficient electrode material for supercapacitors

2018 ◽  
Vol 17 ◽  
pp. 318-326 ◽  
Author(s):  
Hidayat Ullah Shah ◽  
Fengping Wang ◽  
Muhammad Sufyan Javed ◽  
M.A. Ahmad ◽  
Muhammad Saleem ◽  
...  
2019 ◽  
Vol 10 (5) ◽  
pp. 1591-1601 ◽  
Author(s):  
Yongpan Gu ◽  
Weimin Du ◽  
Yusuf Darrat ◽  
Mahdi Saleh ◽  
Yuxin Huang ◽  
...  

2020 ◽  
Vol 206 (1) ◽  
pp. 87-95
Author(s):  
Bingyang Yang ◽  
Xin Jin ◽  
Yue Wang ◽  
Yi Yu ◽  
Baopeng Zhang ◽  
...  

Author(s):  
Yoshichika Bando ◽  
Takahito Terashima ◽  
Kenji Iijima ◽  
Kazunuki Yamamoto ◽  
Kazuto Hirata ◽  
...  

The high quality thin films of high-Tc superconducting oxide are necessary for elucidating the superconducting mechanism and for device application. The recent trend in the preparation of high-Tc films has been toward “in-situ” growth of the superconducting phase at relatively low temperatures. The purpose of “in-situ” growth is to attain surface smoothness suitable for fabricating film devices but also to obtain high quality film. We present the investigation on the initial growth manner of YBCO by in-situ reflective high energy electron diffraction (RHEED) technique and on the structural and superconducting properties of the resulting ultrathin films below 100Å. The epitaxial films have been grown on (100) plane of MgO and SrTiO, heated below 650°C by activated reactive evaporation. The in-situ RHEED observation and the intensity measurement was carried out during deposition of YBCO on the substrate at 650°C. The deposition rate was 0.8Å/s. Fig. 1 shows the RHEED patterns at every stage of deposition of YBCO on MgO(100). All the patterns exhibit the sharp streaks, indicating that the film surface is atomically smooth and the growth manner is layer-by-layer.


2021 ◽  
Vol 410 ◽  
pp. 126958
Author(s):  
Linnea Selegård ◽  
Thirza Poot ◽  
Peter Eriksson ◽  
Justinas Palisaitis ◽  
Per O.Å. Persson ◽  
...  

Carbon ◽  
2021 ◽  
Vol 174 ◽  
pp. 423-429
Author(s):  
Xinlu Li ◽  
Seoung-Ki Lee ◽  
Junwei Sha ◽  
Yuanyuan Deng ◽  
Yujie Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document