Modeling and Performance Evaluation of the Dynamic Behavior of Gravity Energy Storage with a Wire Rope Hoisting System

2021 ◽  
Vol 33 ◽  
pp. 102154
Author(s):  
Anisa Emrani ◽  
Asmae Berrada ◽  
Mohamed Bakhouya
2021 ◽  
Vol 292 ◽  
pp. 116843
Author(s):  
Anurag Goyal ◽  
Eric Kozubal ◽  
Jason Woods ◽  
Malek Nofal ◽  
Said Al-Hallaj

2018 ◽  
Vol 9 (1) ◽  
pp. 13 ◽  
Author(s):  
Long Bai ◽  
Fan Zheng ◽  
Xiaohong Chen ◽  
Yuanxi Sun ◽  
Junzhan Hou

This paper proposes the design and performance evaluation of a miniaturized continuous hopping robot RHop for unstructured terrain. The hopping mechanism of RHop is realized by an optimized geared symmetric closed-chain multi-bar mechanism that is transformed from the eight-bar mechanism, and the actuator of RHop is realized by a servo motor and the clockwork spring, thereby enabling RHop to realize continuous hopping while its motor rotates continuously only in one direction. Comparative simulations and experiments are conducted for RHop. The results show that RHop can realize better continuous hopping performance, as well as the improvement of energy conversion efficiency from 70.98% to 76.29% when the clockwork spring is applied in the actuator. In addition, comparisons with some state-of-the-art hopping robots are conducted, and the normalized results show that RHop has a better energy storage speed.


1994 ◽  
Vol 6 (5) ◽  
pp. 384-389
Author(s):  
Hironori A. Fujii ◽  
◽  
Kenji Uchiyama ◽  
Tsugito Maruyama ◽  

An experimental system simulating the dynamic behavior of a space manipulator is illustrated in this paper. It is constructed for the purpose of technological demonstration and performance evaluation of space robot. The system consists of a model of space robot having dual manipulators, suspension system, and control system. The model is hung by wire at each joint of the manipulator to cancel the effect of the gravitational force on the ground. The value of wire tension is maintained constant to provide a ground simulation of the dynamic behavior of the manipulator in space. Accelerometers are employed to evaluate the micro-gravity condition for the present experimental device. The dynamics of the twolink manipulator with rigid link is analyzed numerically and experimentally, employing the present facility through the inspection of their dynamic features. In the present paper, the motion of the manipulator is restricted in the vertical plane as the first stage of study. The motion of a free-flying robot is also simulated in the experiment. The results of the numerical simulation and ,the experiment are presented to show the sufficient capability of the ground simulation to study dynamcal behavior of the manipulator in space.


Sign in / Sign up

Export Citation Format

Share Document