Thermophysical properties of Nano-enhanced phase change materials for domestic heating applications

2022 ◽  
Vol 46 ◽  
pp. 103794
Author(s):  
Elisangela Jesus D'Oliveira ◽  
Sol Carolina Costa Pereira ◽  
Dominic Groulx ◽  
Ulugbek Azimov
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3033
Author(s):  
Anastasia Stamatiou ◽  
Lukas Müller ◽  
Roger Zimmermann ◽  
Jamie Hillis ◽  
David Oliver ◽  
...  

Latent heat storage units for refrigeration processes are promising as alternatives to water/glycol-based storage due to their significantly higher energy densities, which would lead to more compact and potentially more cost-effective storages. In this study, important thermophysical properties of five phase change material (PCM) candidates are determined in the temperature range between −22 and −35 °C and their compatibility with relevant metals and polymers is investigated. The goal is to complement existing scattered information in literature and to apply a consistent testing methodology to all PCMs, to enable a more reliable comparison between them. More specifically, the enthalpy of fusion, melting point, density, compatibility with aluminum, copper, polyethylene (PE), polypropylene (PP), neoprene and butyl rubber, are experimentally determined for 1-heptanol, n-decane, propionic acid, NaCl/water mixtures, and Al(NO3)3/water mixtures. The results of the investigations reveal individual strengths and weaknesses of the five candidates. Further, 23.3 wt.% NaCl in water stands out for its very high volumetric energy density and n-decane follows with a lower energy density but better compatibility with surrounding materials and supercooling performance. The importance of using consistent methodologies to determine thermophysical properties when the goal is to compare PCM performance is highlighted.


RSC Advances ◽  
2014 ◽  
Vol 4 (74) ◽  
pp. 39552-39557 ◽  
Author(s):  
Zhonghao Rao ◽  
Xinyu You ◽  
Yutao Huo ◽  
Xinjian Liu

The nano-encapsulated phase change materials (PCM), which have several good thermophysical properties, were proposed as potential for thermal energy storage.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4687
Author(s):  
Arnold Martínez ◽  
Mauricio Carmona ◽  
Cristóbal Cortés ◽  
Inmaculada Arauzo

The growing interest in developing applications for the storage of thermal energy (TES) is highly linked to the knowledge of the properties of the materials that will be used for that purpose. Likewise, the validity of representing processes through numerical simulations will depend on the accuracy of the thermal properties of the materials. The most relevant properties in the characterization of phase change materials (PCM) are the phase change enthalpy, thermal conductivity, heat capacity and density. Differential scanning calorimetry (DSC) is the most widely used technique for determining thermophysical properties. However, several unconventional methods have been proposed in the literature, mainly due to overcome the limitations of DSC, namely, the small sample required which is unsuitable for studying inhomogeneous materials. This paper presents the characterization of two commercial paraffins commonly used in TES applications, using methods such as T-history and T-melting, which were selected due to their simplicity, high reproducibility, and low cost of implementation. In order to evaluate the reliability of the methods, values calculated with the proposed alternative methods are compared with the results obtained by DSC measurements and with the manufacturer’s technical datasheet. Results obtained show that these non-conventional techniques can be used for the accurate estimation of selected thermal properties. A detailed discussion of the advantage and disadvantage of each method is given.


Author(s):  
Li-Wu Fan ◽  
Liang Zhang ◽  
Zi-Tao Yu ◽  
Xu Xu ◽  
Ya-Cai Hu ◽  
...  

A numerical study of constrained melting of nanostructure-enhanced phase change materials (NEPCM) consisting of eicosane and various loadings of CNTs in a rectangular cavity heated from below was performed. Assuming that the NEPCM are single-phase PCMs with homogeneous thermophysical properties, the problem was solved using a finite volume method based on the enthalpy-porosity scheme for solid-liquid phase change. The effective thermophysical properties of NEPCM were predicted using the mixture models and empirical equation with respect to the loading of CNTs. Three nominal Grashof numbers corresponding to three sizes of the cavity were considered. Evolutions of the constrained melting processes were presented by means of snapshots of the temperature contour at representative time instants. The melting rates and local heat transfer along the heated bottom were compared quantitatively based on the variations of the instantaneous liquid fraction and average Nusselt number over the bottom during melting, respectively. It was shown that at a given size of the cavity, melting was expedited as more CNTs were introduced. The expediting of melting was mainly attributed to the enhanced thermal conductivity and lowering of latent heat of fusion of NEPCM. The inclusion of CNTs, however, increases considerably the viscosity of melted NEPCM, which in turn leads to less significant natural convection effect during melting. As a result, increase of loading of CNTs was shown to lead to two competing effects. The feasibility of NEPCM in melting is justified when the enhanced heat conduction overweighs the suppressed natural convection.


Sign in / Sign up

Export Citation Format

Share Document