Accurate CNN-based pupil segmentation with an ellipse fit error regularization term

2021 ◽  
pp. 116004
Author(s):  
Cuneyt Akinlar ◽  
Hatice Kubra Kucukkartal ◽  
Cihan Topal
Keyword(s):  
2018 ◽  
Vol 8 (12) ◽  
pp. 2393 ◽  
Author(s):  
Lin Sun ◽  
Xinchao Meng ◽  
Jiucheng Xu ◽  
Shiguang Zhang

When the level set algorithm is used to segment an image, the level set function must be initialized periodically to ensure that it remains a signed distance function (SDF). To avoid this defect, an improved regularized level set method-based image segmentation approach is presented. First, a new potential function is defined and introduced to reconstruct a new distance regularization term to solve this issue of periodically initializing the level set function. Second, by combining the distance regularization term with the internal and external energy terms, a new energy functional is developed. Then, the process of the new energy functional evolution is derived by using the calculus of variations and the steepest descent approach, and a partial differential equation is designed. Finally, an improved regularized level set-based image segmentation (IRLS-IS) method is proposed. Numerical experimental results demonstrate that the IRLS-IS method is not only effective and robust to segment noise and intensity-inhomogeneous images but can also analyze complex medical images well.


2010 ◽  
Vol 22 (12) ◽  
pp. 3221-3235 ◽  
Author(s):  
Hongzhi Tong ◽  
Di-Rong Chen ◽  
Fenghong Yang

The selection of the penalty functional is critical for the performance of a regularized learning algorithm, and thus it deserves special attention. In this article, we present a least square regression algorithm based on lp-coefficient regularization. Comparing with the classical regularized least square regression, the new algorithm is different in the regularization term. Our primary focus is on the error analysis of the algorithm. An explicit learning rate is derived under some ordinary assumptions.


Author(s):  
Xufang Luo ◽  
Qi Meng ◽  
Di He ◽  
Wei Chen ◽  
Yunhong Wang

Learning expressive representations is always crucial for well-performed policies in deep reinforcement learning (DRL). Different from supervised learning, in DRL, accurate targets are not always available, and some inputs with different actions only have tiny differences, which stimulates the demand for learning expressive representations. In this paper, firstly, we empirically compare the representations of DRL models with different performances. We observe that the representations of a better state extractor (SE) are more scattered than a worse one when they are visualized. Thus, we investigate the singular values of representation matrix, and find that, better SEs always correspond to smaller differences among these singular values. Next, based on such observations, we define an indicator of the representations for DRL model, which is the Number of Significant Singular Values (NSSV) of a representation matrix. Then, we propose I4R algorithm, to improve DRL algorithms by adding the corresponding regularization term to enhance the NSSV. Finally, we apply I4R to both policy gradient and value based algorithms on Atari games, and the results show the superiority of our proposed method.


2020 ◽  
Author(s):  
Na Yao ◽  
Fuchuan Ni ◽  
Ziyan Wang ◽  
Jun Luo ◽  
Wing-Kin Sung ◽  
...  

Abstract Background: Peach diseases can cause severe yield reduction and decreased quality for peach production. Rapid and accurate detection and identification of peach diseases is of great importance. Deep learning has been applied to detect peach diseases using imaging data. However, peach disease image data is difficult to collect and samples are imbalance. The popular deep networks perform poor for this issue.Results: This paper proposed an improved Xception network named as L2MXception which ensembles regularization term of L2-norm and mean. With the peach disease image dataset collected, results on seven mainstream deep learning models were compared in details and an improved loss function was integrated with regularization term L2-norm and mean (L2M Loss). Experiments showed that the Xception model with L2M Loss outperformed the current best method for peach disease prediction. Compared to the original Xception model, the validation accuracy of L2MXception was up to 93.85%, increased by 28.48%. Conclusions: The proposed L2MXception network may have great potential in early identification of peach diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Vangelis P. Oikonomou ◽  
Ioannis Kompatsiaris

We propose a new method for EEG source localization. An efficient solution to this problem requires choosing an appropriate regularization term in order to constraint the original problem. In our work, we adopt the Bayesian framework to place constraints; hence, the regularization term is closely connected to the prior distribution. More specifically, we propose a new sparse prior for the localization of EEG sources. The proposed prior distribution has sparse properties favoring focal EEG sources. In order to obtain an efficient algorithm, we use the variational Bayesian (VB) framework which provides us with a tractable iterative algorithm of closed-form equations. Additionally, we provide extensions of our method in cases where we observe group structures and spatially extended EEG sources. We have performed experiments using synthetic EEG data and real EEG data from three publicly available datasets. The real EEG data are produced due to the presentation of auditory and visual stimulus. We compare the proposed method with well-known approaches of EEG source localization and the results have shown that our method presents state-of-the-art performance, especially in cases where we expect few activated brain regions. The proposed method can effectively detect EEG sources in various circumstances. Overall, the proposed sparse prior for EEG source localization results in more accurate localization of EEG sources than state-of-the-art approaches.


Author(s):  
Linsen Song ◽  
Jie Cao ◽  
Lingxiao Song ◽  
Yibo Hu ◽  
Ran He

Face completion is a challenging generation task because it requires generating visually pleasing new pixels that are semantically consistent with the unmasked face region. This paper proposes a geometry-aware Face Completion and Editing NETwork (FCENet) by systematically studying facial geometry from the unmasked region. Firstly, a facial geometry estimator is learned to estimate facial landmark heatmaps and parsing maps from the unmasked face image. Then, an encoder-decoder structure generator serves to complete a face image and disentangle its mask areas conditioned on both the masked face image and the estimated facial geometry images. Besides, since low-rank property exists in manually labeled masks, a low-rank regularization term is imposed on the disentangled masks, enforcing our completion network to manage occlusion area with various shape and size. Furthermore, our network can generate diverse results from the same masked input by modifying estimated facial geometry, which provides a flexible mean to edit the completed face appearance. Extensive experimental results qualitatively and quantitatively demonstrate that our network is able to generate visually pleasing face completion results and edit face attributes as well.


Sign in / Sign up

Export Citation Format

Share Document