Synthesis and cation exchange capacity of zeolite W from ultra-fine natural zeolite waste

Author(s):  
Zeng Zijun ◽  
Grea Effeney ◽  
Graeme J. Millar ◽  
Maroun Stephen
2018 ◽  
Vol 3 (1) ◽  
pp. 721
Author(s):  
Dr. Cecilio Hernández B. ◽  
M.Sc. Jorge Olmos ◽  
Licda. Yahaira Espinosa

The initial results of the properties that have been determined to a sample of natural zeolite, coming from areas of volcanic activity of Panama, and that has been identified with potential for its industrial explotation, are presented. Some physicochemical properties, chemical composition and morphology were determined. A natural zeolite with an intermediate level of Si/Al (2.62), low levels of dissolved salts and a morphology with pores-shaped channels with a diameter of 5 mm are observed.Keywords: natural zeolites, chemisorption, morphology, macropores, cation exchange capacity


2016 ◽  
Vol 70 (5) ◽  
pp. 519-524 ◽  
Author(s):  
Marija Markovic ◽  
Aleksandra Dakovic ◽  
George Rottinghaus ◽  
Mirjana Stojanovic ◽  
Vera Dondur ◽  
...  

Aflatoxin B1 adsorption by the concentrate of bentonite clay - montmorillonite and the natural zeolite - clinoptilolite and was investigated at the initial toxin concentration 4 ppm, with different amonunts of solid phase in suspension (10, 5, 2 and 1 mg/10 mL) and different pH values - 3, 7 and 9. Results indicated that for both minerals, decreasing the amount of solid phase in suspension, decrease the amount of active sites relevant for adsorption of aflatoxin B1. Thus, for concentrate of montnorillonite, at the lowest level of solid phase in suspension (1 mg/10 mL), aflatoxin B1 adsorption indexes were 97% at pH 3, 88% at pH 7 and 82% at pH 9, while for the natural zeolite, adsorption of toxin was 9% at pH 3 and 7% at pH 7 and 9. Since inorganic cations in minerals are mainly responsible for aflatoxin B1 adsorption, even the natural zeolite - clinoptilite has much higher cation exchange capacity (the content of inorganic exchangeable cations) compared to the concentrate of montmorillonite, adsorption of aflatoxin B1 by this mineral is much lower. Comparing the molecular dimensions of aflatoxin B1 molecule with the dimension of channels of clinoptilolite and interlamellar space of montmorillonite it is obvious that this toxin is adsorbed only at the external surface of clinoptilolite while in the montmorillonite all active sites are equally available for its adsorption. Thus, the concentrate of montmorillonite posess by higher adsorption capacity for aflatoxin B1. Results presented in this paper confirmed the fact the differences in the structure of minerals led to their different efficiency for adsorption of aflatoxin B1. Mineralogical and chemical composition, determination of cation exchange capacity, etc., are very important parameters influencing the effectiveness of minerals as aflatoxin B1 adsorbents. [Projekat Ministarstva nauke Republike Srbije, br. 451-03-2802-IP Tip1/142, br. 172018 i br. 34013] <br><br><font color="red"><b> This article has been corrected. Link to the correction <u><a href="http://dx.doi.org/10.2298/HEMIND170208003E">10.2298/HEMIND170208003E</a><u></b></font>


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 252
Author(s):  
Seokju Hong ◽  
Wooyong Um

A solid phase of natural zeolite was transformed to Na-zeolite P (NaP zeolite) by a “top-down approach” hydrothermal reaction using 3 M of NaOH solution in a 96 °C oven. Time-dependent X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), XRF, and scanning electron microscopy (SEM) analysis as well as kinetic, isotherm, and cation exchange capacity experiments were performed to understand the mechanism of mineral transition from natural zeolite to NaP zeolite. The XRD crystal peaks of the natural zeolite decreased (decrystallization phase) first, and then the NaP zeolite XRD crystal peaks increased gradually (recrystallization phase). From the XRF results, the dissolution rate of Si was slow in the recrystallization phase, while it was rapid in the decrystallization phase. The specific surface area measured by BET analysis was higher in NaP zeolite (95.95 m2/g) compared to that of natural zeolite (31.35 m2/g). Furthermore, pore structure analysis confirmed that NaP zeolites have more micropores than natural zeolite. In the kinetic experiment, the results showed that the natural zeolite and NaP zeolite were well matched with a pseudo-second-order kinetic model, and reached equilibrium within 24 h. The isotherm experiment results confirmed that both zeolites were well matched with the Langmuir isotherm, and the maximum removal capacity (Qmax) values of Sr and Ni were highly increased in NaP zeolite. In addition, the cation exchange capacity (CEC) experiment showed that NaP zeolite has an enhanced CEC of 310.89 cmol/kg compared to natural zeolite (CEC = 119.19 cmol/kg). In the actual batch sorption test, NaP zeolite (35.3 mg/g) still showed high Cs removal efficiency though it was slightly lower than the natural zeolite (39.0 mg/g). However, in case of Sr and Ni, NaP zeolite (27.9 and 27.8 mg/g, respectively) showed a much higher removal efficiency than natural zeolite (4.9 and 5.5 mg/g for Sr and Ni, respectively). This suggests that NaP zeolite, synthesized by a top-down desilication method, is more practical to remove mixed radionuclides from a waste solution.


2013 ◽  
Vol 67 (4) ◽  
pp. 663-669 ◽  
Author(s):  
Zivko Sekulic ◽  
Aleksandra Dakovic ◽  
Milan Kragovic ◽  
Marija Markovic ◽  
Branislav Ivosevic ◽  
...  

This paper presents results of investigations of the quality of the natural zeolite as well as the quality of particular particle size classes of the natural zeolite. The aim of the investigations was to determine if the different classes possess different qualitys. The starting material used in experiements was the natural zeolite from Zlatokop deposit (Vranjska Banja, Serbia).. The classes -0.2+0.8 mm; -0.8+0.6 mm; -0.6+0.4 mm; -0.4+0.1 mm were obtained by wet sieving of the natural zeolite. Grinding processes of the natural zeolite gave classes -0.3+0.63 mm; -0.63+0 mm; -0,43+0 mm. Chemical composition , mineralogical XRPD analysis and cation exchange capacity (CEC) were performed on the starting sample and the obtained particle size classes. It was determined that all particle size classes possess similar quality. The highest cation exchange capacity was observed in classes -0,043+0mm (166,5 meq/100g) and -0,063+0mm (158, 8 meq/100g).


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Mardi Wibowo

Since year 1977 until 2005, PT. ANTAM has been exploited nickel ore resources at Gebe Island – Center ofHalmahera District – North Maluku Province. Mining activity, beside give economically advantages also causedegradation of environment quality espicially land quality. Therefore, it need evaluation activity for change ofland quality at Gebe Island after mining activity.From chemical rehabilitation aspect, post mining land and rehabilitation land indacate very lack and lackfertility (base saturated 45,87 – 99,6%; cation exchange capacity 9,43 – 12,43%; Organic Carbon 1,12 –2,31%). From availability of nutrirnt element aspect, post mining land and rehabilitation land indicate verylack and lack fertility (nitrogen 0,1 – 1,19%). Base on that data, it can be concluded that land reclamationactivity not yet achieve standart condition of chemical land.Key words : land quality, post mining lan


Author(s):  
Geraldo R. Zuba Junio ◽  
Regynaldo A. Sampaio ◽  
Altina L. Nascimento ◽  
Luiz A. Fernandes ◽  
Natália N. de Lima ◽  
...  

ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L.), variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca) and magnesium (Mg) silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1) and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis). Soil organic matter (OM), pH, sum of bases (SB), effective cation exchange capacity (CEC(t)), total cation exchange capacity (CEC(T)), base saturation (V%) and potential acidity (H + Al) were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.


Sign in / Sign up

Export Citation Format

Share Document