Merkin and Needham wall jet problem for hybrid nanofluids with thermal energy

2020 ◽  
Vol 83 ◽  
pp. 195-204 ◽  
Author(s):  
Emad H. Aly ◽  
I. Pop
2021 ◽  
pp. 116890
Author(s):  
Humphrey Adun ◽  
Ifeoluwa Wole-Osho ◽  
Eric C. Okonkwo ◽  
Doga Kavaz ◽  
Mustafa Dagbasi

Optics ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 155-172
Author(s):  
Henning Otto ◽  
Christian Resagk ◽  
Christian Cierpka

Thermal energy storages (TES) are increasingly important for storing energy from renewable energy sources. TES that work with liquid storage materials are used in their most efficient way by stratifying the storage fluid by its thermal density gradient. Mixing of the stratification layers during stand-by periods decreases the thermal efficiency of the TES. Tank sidewalls, unlike the often poorly heat-conducting storage fluids, promote a heat flux from the hot to the cold layer and lead to thermal convection. In this experimental study planar particle image velocimetry (PIV) measurements and background-oriented schlieren (BOS) temperature measurements are performed in a model experiment of a TES to characterise the influence of the thermal convection on the stratification and thus the storage efficiency. The PIV results show two vertical, counter-directed wall jets that approach in the thermocline between the stratification layers. The wall jet in the hot part of the thermal stratification shows compared to the wall jet in the cold region strong fluctuations in the vertical velocity, that promote mixing of the two layers. The BOS measurements have proven that the technique is capable of measuring temperature fields in thermally stratified storage tanks. The density gradient field as an intermediate result during the evaluation of the temperature field can be used to indicate convective structures that are in good agreement to the measured velocity fields.


Author(s):  
W.P. De Lange

The Greenhouse Effect acts to slow the escape of infrared radiation to space, and hence warms the atmosphere. The oceans derive almost all of their thermal energy from the sun, and none from infrared radiation in the atmosphere. The thermal energy stored by the oceans is transported globally and released after a range of different time periods. The release of thermal energy from the oceans modifies the behaviour of atmospheric circulation, and hence varies climate. Based on ocean behaviour, New Zealand can expect weather patterns similar to those from 1890-1922 and another Little Ice Age may develop this century.


Sign in / Sign up

Export Citation Format

Share Document