Practical representation of flows due to general singularity distributions for wave diffraction-radiation by offshore structures in finite water depth

Author(s):  
Huiyu Wu ◽  
Jiayi He ◽  
Ren-Chuan Zhu ◽  
Chen-Jun Yang ◽  
Francis Noblesse
Author(s):  
Ting Cui ◽  
Arun Kamath ◽  
Weizhi Wang ◽  
Lihao Yuan ◽  
Duanfeng Han ◽  
...  

Abstract Accuracy estimation of wave loading on cylinders in a pile group under different impact scenarios is essential for both the structural safety and cost of coastal and offshore structures. Differing from the interaction of waves with a single cylinder, less attention has been paid to pile groups under different arrangements. Numerical simulations of interactions between plunging breaking waves and pile group in finite water depth are performed using the two-phase flow model in REEF3D, an open-source computational fluid dynamics program to investigate the wave loads and flow kinematics characteristics. The Reynolds-averaged Navier-Stokes equation with the two equation k − ω turbulence model is adopted to resolve the numerical wave tank. The model is validated by comparing the numerical wave forces and free surface elevation with measurements from experiments. The computational results show fairly good agreement with experimental data. Four cases are simulated with different relative distances, numbers of cylinders and arrangements. Results show that the wave forces on cylinders in the pile group are effected by the relative distance between cylinders. The staggered arrangement has a significant influence on the wave forces on the first and second cylinder. The interaction inside a pile group mostly happens between the neighboring cylinders.


2011 ◽  
Vol 2 (2) ◽  
pp. 320-333
Author(s):  
F. Van den Abeele ◽  
J. Vande Voorde

The worldwide demand for energy, and in particular fossil fuels, keeps pushing the boundaries of offshoreengineering. Oil and gas majors are conducting their exploration and production activities in remotelocations and water depths exceeding 3000 meters. Such challenging conditions call for enhancedengineering techniques to cope with the risks of collapse, fatigue and pressure containment.On the other hand, offshore structures in shallow water depth (up to 100 meter) require a different anddedicated approach. Such structures are less prone to unstable collapse, but are often subjected to higherflow velocities, induced by both tides and waves. In this paper, numerical tools and utilities to study thestability of offshore structures in shallow water depth are reviewed, and three case studies are provided.First, the Coupled Eulerian Lagrangian (CEL) approach is demonstrated to combine the effects of fluid flowon the structural response of offshore structures. This approach is used to predict fluid flow aroundsubmersible platforms and jack-up rigs.Then, a Computational Fluid Dynamics (CFD) analysis is performed to calculate the turbulent Von Karmanstreet in the wake of subsea structures. At higher Reynolds numbers, this turbulent flow can give rise tovortex shedding and hence cyclic loading. Fluid structure interaction is applied to investigate the dynamicsof submarine risers, and evaluate the susceptibility of vortex induced vibrations.As a third case study, a hydrodynamic analysis is conducted to assess the combined effects of steadycurrent and oscillatory wave-induced flow on submerged structures. At the end of this paper, such ananalysis is performed to calculate drag, lift and inertia forces on partially buried subsea pipelines.


2014 ◽  
Vol 30 (02) ◽  
pp. 66-78
Author(s):  
Mark Pavkov ◽  
Morabito Morabitob

Experiments were conducted at the U.S. Naval Academy's Hydromechanics Laboratory to determine the effect of finite water depth on the resistance, heave, and trim of two different trimaran models. The models were tested at the same length to water depth ratios over a range of Froude numbers in the displacement speed regime. The models were also towed in deep water for comparison. Additionally, the side hulls were adjusted to two different longitudinal positions to investigate possible differences resulting from position. Near critical speed, a large increase in resistance and sinkage was observed, consistent with observations of conventional displacement hulls. The data from the two models are scaled up to a notional 125-m length to illustrate the effects that would be observed for actual ships similar in size to the U.S. Navy's Independence Class Littoral Combat Ship. Faired plots are developed to allow for rapid estimation of shallow water effect on trimaran resistance and under keel clearance. An example is provided.


Sign in / Sign up

Export Citation Format

Share Document