Focused Plunging Breaking Waves Impact on Pile Group in Finite Water Depth

Author(s):  
Ting Cui ◽  
Arun Kamath ◽  
Weizhi Wang ◽  
Lihao Yuan ◽  
Duanfeng Han ◽  
...  

Abstract Accuracy estimation of wave loading on cylinders in a pile group under different impact scenarios is essential for both the structural safety and cost of coastal and offshore structures. Differing from the interaction of waves with a single cylinder, less attention has been paid to pile groups under different arrangements. Numerical simulations of interactions between plunging breaking waves and pile group in finite water depth are performed using the two-phase flow model in REEF3D, an open-source computational fluid dynamics program to investigate the wave loads and flow kinematics characteristics. The Reynolds-averaged Navier-Stokes equation with the two equation k − ω turbulence model is adopted to resolve the numerical wave tank. The model is validated by comparing the numerical wave forces and free surface elevation with measurements from experiments. The computational results show fairly good agreement with experimental data. Four cases are simulated with different relative distances, numbers of cylinders and arrangements. Results show that the wave forces on cylinders in the pile group are effected by the relative distance between cylinders. The staggered arrangement has a significant influence on the wave forces on the first and second cylinder. The interaction inside a pile group mostly happens between the neighboring cylinders.

2021 ◽  
Author(s):  
Ting Cui ◽  
Arun Kamath ◽  
Weizhi Wang ◽  
Lihao Yuan ◽  
Duanfeng Han ◽  
...  

Abstract The correct estimation of wave loading on a cylinder in a cylinder group under different impact scenarios is essential to determine the structural safety of coastal and offshore structures. This scenario differs from the interaction of waves with a single cylinder but not a lot of studies focus on cylinder groups under different arrangements. In this study, the interaction between plunging breaking waves and cylinder groups in deep water is investigated using the two-phase flow model in REEF3D, an open-source computational fluid dynamics program. The Reynolds-averaged Navier-Stokes equation with the two equation k–Ω turbulence model is adopted to resolve the numerical wave tank, with free surface calculated using the level set method. In this study, focused waves in deep water were modeled with a fixed wave steepness method. Wave breaking occurs when the steepness of the wave crest front satisfies the breaking criteria. The model is validated by comparing the numerical wave forces and free surface elevation with measurements from experiments. The computational results show fairly good agreement with experimental data for both free surface elevation and wave forces. Four cases are simulated to investigate the interaction of breaking waves with a cylinder group with different relative distance, number of cylinders and arrangement. Results show that breaking wave forces on the upstream cylinder are smaller than on a single cylinder with a relative distance of one cylinder diameter. The wave forces on cylinders in the pile group are effected by the relative distance between cylinders. The staggered arrangement has a significant influence on the wave forces on the first and second cylinder. The interaction inside a cylinder group mostly happens between the neighbouring cylinders. These interactions are also effected by the relative distance and the numbers of the neighbouring cylinders.


Author(s):  
Hans Bihs ◽  
Arun Kamath ◽  
Ankit Aggarwal ◽  
Csaba Pakozdi

For the estimation of wave loads on offshore structures, relevant extreme wave events need to be identified. In order to achieve this, long-term wave simulations of relatively large scales need to be performed. Computational fluid dynamics (CFD) based numerical wave tanks with an interface capturing two-phase flow approach typically require too large computational resources. In this paper, a three-dimensional (3D) nonhydrostatic wave model is presented, which solves the Navier–Stokes equations and employs an interface tracking method based on the continuity of the horizontal velocities along the vertical water column. With this approach, relatively fewer cells are needed in the vicinity of the air–water interface compared to CFD-based numerical wave tanks. The numerical model solves the governing equations on a rectilinear grid, which allows for the employment of high-order finite differences. The capabilities of the new wave model are presented by comparing the wave propagation in the tank with the CFD approach in a two-dimensional (2D) simulation. Further, a 3D simulation is carried out to determine the wave forces on a vertical cylinder. The calculated wave forces using the new approach are compared to those obtained using the CFD approach and experimental data. It is seen that the new approach provides a similar accuracy to that from the CFD approach while providing a large reduction in the time taken for the simulation. The gain is calculated to be about 4.5 for the 2D simulation and about 7.1 for the 3D simulation.


Author(s):  
Zhuo Fang ◽  
Liang Cheng ◽  
Ningchuan Zhang

In this study, a 3-D numerical wave tank is developed, based on a commercial computational fluid dynamics (CFD) package (FLUENT) to predict wave forces on coastal and offshore structures. A source wave-generation method is introduced to FLUENT through user-defined functions to generate incident waves. Spongy layers are used on both upstream and downstream sides of the wave tank to reduce the effects of wave reflections and secondary wave reflections. Various wave trains, such as linear monochromatic waves, second order Stokes waves and irregular waves were generated by using different source functions. It is demonstrated through numerical examples that the source wave-generation method can accurately generate not only small amplitude waves but also nonlinear waves. The present numerical wave tank is validated against standing waves in front of a vertical breakwater. Interactions between waves and a comb-type breakwater are simulated using the present model. The numerical results are compared with physical experimental results. It is found that the present numerical wave tank simulated the wave and breakwater interactions well.


Author(s):  
Jikun You ◽  
Einar Bernt Glomnes

This paper presents the applications of an efficient hybrid time-domain simulation model for predicting moored Sevan-floater motions in irregular waves and finite water depth. The irregular incident waves are modeled by the extended Boussinesq equations, which can capture wave-wave interactions and the low-frequency long waves accurately in finite and shallow water depth. By imposing the incident wave kinematics on the surface of the floater, a panel model based on Rankine source method is applied for the calculation of wave forces and corresponding floater motions. The contributions from low-frequency components in incident waves as well as their diffraction effects are included in the wave force calculations. Validation of the irregular waves simulated by the present numerical model are performed against experimental data. Then, the simulated moored floater motions are compared with model test results and results based on Newman’s approximation. The general good agreements with experimental results demonstrate the present model can be used as an alternative for this problem while Newman’s approximation shows non-conservative results.


2018 ◽  
Vol 8 (1) ◽  
pp. 37-46
Author(s):  
M. Ghatarband ◽  
M. Behdarvandi Askar

Abstract Today, advanced countries compete enormously for further exploitation in the offshore area, for its enormous fresh resources and space. Therefore, these competitions will double the importance of these types of structures. As it is known, the most important part in the design of the offshore structures is the design of the piles on which the structure will be placed. Engineers have always been trying to build these types of structures with the least cost and the highest safety factor. In this research, the effect of distance and the ratio of the elliptical pile diameters on the strength of the pile group was evaluated using numerical modeling. Five different states of diameter ratios including: 1.2, 1.4, 2, 2.5, 3 and five different distance ratios were investigated. The results demonstrate that with the increase in the diameter ratio, the amount of force decreases while it increases as the distance ratio rises.


Author(s):  
Jithin Jose ◽  
Olga Podrażka ◽  
Ove Tobias Gudmestad ◽  
Witold Cieślikiewicz

Due to increased energy demand and thrive for clean energy, offshore wind energy has become popular these days. A large number of offshore wind turbines supported by fixed type substructures have been installed, among which jacket structures are getting popular in recent times. The forces from breaking waves are a major concern in the design of offshore structures installed in shallow waters. However, there are only limited studies available regarding breaking wave forces on jacket structures and still there exist many uncertainties in this area. During the WaveSlam experiment carried out in 2013, a jacket structure of 1:8 scale was tested on a large number of breaking wave conditions. Wave properties and the forces on the structure were measured during the experiment. The total wave slamming forces are being filtered from the experimental measured force using the Empirical Mode Decomposition method and local slamming forces are obtained by the Frequency Response Function method. Based on these results, the peak slamming force and slamming coefficients on the jacket members are estimated. The wave parameters (wave height and period) and wave front asymmetry are obtained from measured wave properties. The variation of slamming forces and slamming coefficients with respect to these parameters are also investigated.


Author(s):  
Jagat N. Sharma ◽  
Robert G. Dean

We briefly describe a method for simulating second order directional seas and associated wave forces. We present wave force calculations for simplified forms of real offshore structures. Compared to unidirectional wave force calculations, this method reduces total design wave force. Complex subharmonic motion of large floating structures can be easily understood within the framework of this simulation method. A real sea is first represented by discrete linear waves of many frequencies traveling in many directions. Then, second order effects are calculated using equations derived for this purpose. The sum of linear and nonlinear waves is used to calculate wave forces on example offshore structures. The simulation method has been applied to calculate total wave forces on a single pile and a 4-pile group. Simulation method calculated wave forces on a single pile and a 4-pile group on a 60 ft square array are only 61% of wave forces using unidirectional wave methods. These results are the same as those obtained by a so-called hybrid method (Dean 1977) for the drag dominant case. When the pile separation is increased to 300 ft (similar to a TLP or a semisubmersible) the corresponding reduction factor varies from 0.79 for a unidirectional random sea to 0.61 for an omnidirectional random sea. Large offshore structures are relatively insensitive to the linear frequencies but could have very large response to the subharmonic frequencies in the simulation method. This is consistent with the field and laboratory observations.


2012 ◽  
Vol 49 (9) ◽  
pp. 1074-1087 ◽  
Author(s):  
Zheming Li ◽  
Malcolm D. Bolton ◽  
Stuart K. Haigh

Piled foundations are often subjected to cyclic axial loads. This is particularly true for the piles of offshore structures, which are subjected to rocking motions caused by wind or wave actions, and for those of transport structures, which are subjected to traffic loads. As a result of these cyclic loads, excessive differential or absolute settlements may be induced during the piles’ service life. In the research presented here, centrifuge modelling of single piles and pile groups was conducted to investigate the influence of cyclic axial loads on the performance of piled foundations. The influence of installation method was investigated and it was found that the cyclic response of a pile whose jacked installation was modelled correctly is much stiffer than that of a bored pile. During displacement-controlled axial load cycling, the pile head stiffness reduces with an increasing number of cycles, but at a decreasing rate; during force-controlled axial load cycling, more permanent settlement is accumulated for a bored pile than for a jacked pile. The performance of individual piles in a pile group subjected to cyclic axial loads is similar to that of a single pile, without any evident group effect. Finally, a numerical analysis of axially loaded piles was validated by centrifuge test results. Cyclic stiffness of soil at the base of pre-jacked piles increases dramatically, while at base of jacked piles it remains almost constant.


Author(s):  
Spencer T. Hallowell ◽  
Sanjay R. Arwade ◽  
Hannah Johlas ◽  
Pedro Lomonaco ◽  
Andrew Myers

Abstract The vast spatial scale of offshore structures causes wave loading to be correlated amongst nearby structural members. Certain engineering activities including health monitoring, maintenance, and preliminary design of offshore structures requires the prediction of wave forces on said structural members. The high cost and low availability of environmental wave measurements requires the reconstruction of wave kinematics and force profiles to accurately capture the forcing history on offshore structures. A method for predicting wave forces on a cylinder from nearby wave elevation measurements is proposed. The formulation utilizes the Fast Fourier Transform to calculate wave kinematics propagation in the frequency domain and applies the kinematics to the Morison equation for calculation of cylinder forces. The prediction equations are applied to three types of waves: regular periodic waves, random irregular waves, and solitary breaking waves, and the error in both elevation prediction and force prediction when compared to measured values is calculated. The force prediction equations were shown to perform best for small wave heights, with errors as low as 5% in the force predictions for small regular and irregular waves. The error in force prediction increases nonlinearly with the increase in wave height due to the deficiencies of the linear dispersion relationship used in the formulation.


Sign in / Sign up

Export Citation Format

Share Document