scholarly journals Cutting-fluid flow with chip evacuation during deep-hole drilling with twist drills

Author(s):  
Andreas Baumann ◽  
Ekrem Oezkaya ◽  
Dirk Schnabel ◽  
Dirk Biermann ◽  
Peter Eberhard
2010 ◽  
Vol 455 ◽  
pp. 251-256
Author(s):  
Peng Hai ◽  
H.X. Wei

Near-dry deep hole processing technology is a kind of technology which dry cutting technology is applied to deep hole processing to save energy and decrease environmental pollution. In this paper, the structure and work principle of near-dry deep-hole drilling system were introduced and the cutting mechanism of near-dry deep-hole drilling was analyzed which include the mechanism of cutting fluid atomization and flow, the mechanism of atomized cutting fluid cool and lubricate, and the mechanism of separating chips into short pieces and discharge chips by air stream, etc. The mathematical mode of gas-liquid two-phase flow of atomized cutting fluid in drilling shaft and the cooling and lubrication mechanism of the capillary in cutting zone were introduced. It is found that near-dry deep hole processing has better cooling and lubrication effect through experiments.


2015 ◽  
Vol 752-753 ◽  
pp. 466-472
Author(s):  
Zhen Ya Chen ◽  
Zhen Dong ◽  
Xiao Bin Huang ◽  
Yan Lan Li

The relationships between drill speed, whirl, squeeze effect and fluid force drill suffered is got by using cutting fluid Reynolds equation. Principle of deep-hole drilling drill whirl is studied, pointing out the promotion of positive precession cutting fluid component is drill whirl’s reason. Simulated and studied of drill whirl round shape at different times, suggesting that only when BTA drill suffered by the fluid force, stable motion can be obtained. Analysis of the anti-precession of drill, and the squeeze film damper work principle is revealed. Comparative studied the movement of the drill by using MATLAB software simulation before and after adding squeeze film damper.


2018 ◽  
Vol 98 (9-12) ◽  
pp. 3091-3103 ◽  
Author(s):  
Ce Han ◽  
Dinghua Zhang ◽  
Ming Luo ◽  
Baohai Wu

2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Chi-Ting Lee ◽  
Soham S. Mujumdar ◽  
Shiv G. Kapoor

In drilling, chip-clogging results in increased drilling temperature, excessive tool wear, and poor hole quality. Especially, in microdrilling, low rigidity of the tool and inability of cutting fluid to penetrate narrower tool–workpiece interface significantly reduce the drilling performance. A novel bubble-mixed cutting fluid delivery method proposed in this research aims toward achieving a high-performance micro deep-hole drilling process with a significant reduction in the consumption of cutting fluid. Experimental results show that the bubble-mixed cutting fluid delivery method achieves lower thrust force during drilling, higher drilled depth before tool breakage, and lower dimensional and circularity errors when machining deep holes in comparison with dry cutting or conventional flood delivery method. It is also found that the smaller-sized bubbles effectively penetrate the tool–workpiece interface during the drilling producing deeper holes by better chip evacuation and cooling.


2011 ◽  
Vol 189-193 ◽  
pp. 3071-3074
Author(s):  
Hai Peng ◽  
Tong Li

The traditional cast-type method of BTA deep-hole drilling(such as BTA or DF) has cutting fluid consumption of the existence of large, high production costs, pollution of the environment and endangering the health of the operator and other problems. In this paper, the MQL technology (minimum lubrication technology) is applied to the method of BTA deep-hole machining (ie, near-dry deep-hole processing), we also analyzed the function and effect of MQL machining cutting fluid. Through the near-dry deep-hole drilling experiment, we find that a water-soluble cutting fluid has good atomization effect and the processing system also has fine effect of cooling and chip evacuation. We proposed mixed-use oil and the low-temperature cold spray methods to improve the tool lubrication and cooling effect for some great issues such as tool wear.


2017 ◽  
Vol 10 (17) ◽  
pp. 1-6 ◽  
Author(s):  
Anis Farhan Kamaruzaman ◽  
Azlan Mohd Zain ◽  
Noorfa Haszlinna Mustaffa ◽  
Noordin Mohd Yusof ◽  
Farhad Najarian ◽  
...  

2006 ◽  
Vol 128 (4) ◽  
pp. 884-892 ◽  
Author(s):  
Robert Heinemann ◽  
Srichand Hinduja ◽  
George Barrow ◽  
Gerhard Petuelli

This paper investigates the performance of small diameter high-speed steel twist drills drilling boreholes with a depth of ten times the diameter into carbon steel AISI 1045 using minimum quantity lubrication. The performance of small twist drills is determined, first, by their deep-hole drilling capability, i.e., in how far the cutting forces can be kept at a noncritical level by maintaining the chip disposal, and, second, by their tool life. This work shows that both the deep-hole drilling capability and tool life of small drills are strongly dependent on their geometry, in particular the size of the chip flutes, and the flute surface topography.


Sign in / Sign up

Export Citation Format

Share Document