P.0546 Inhibition of basal amygdala-nucleus accumbens glutamate neurons reduce reward learning and motivation in mice

2021 ◽  
Vol 53 ◽  
pp. S402
Author(s):  
L. Madur ◽  
G. Poggi ◽  
H. Sigrist ◽  
C. Ineichen ◽  
J.C. Paterna ◽  
...  
2007 ◽  
Vol 13 (2) ◽  
pp. 148-159 ◽  
Author(s):  
Jeremy J. Day ◽  
Regina M. Carelli

2020 ◽  
Vol 22 (1) ◽  
pp. 345
Author(s):  
Inês M. Amaral ◽  
Cristina Lemos ◽  
Isabella Cera ◽  
Georg Dechant ◽  
Alex Hofer ◽  
...  

Evidence suggests that PKA activity in the nucleus accumbens (NAc) plays an essential role in reward-related learning. In this study, we investigated whether PKA is differentially involved in the expression of learning produced by either natural reinforcers or psychostimulants. For that purpose, we inhibited PKA through a bilateral infusion of Rp-cAMPS, a specific PKA inhibitor, directly into the NAc. The effects of PKA inhibition in the NAc on the expression of concurrent conditioned place preference (CPP) for cocaine (drug) and social interaction (natural reward) in rats were evaluated. We found that PKA inhibition increased the expression of cocaine preference. This effect was not due to altered stress levels or decreased social reward. PKA inhibition did not affect the expression of natural reward as intra-NAc Rp-cAMPS infusion did not affect expression of social preference. When rats were trained to express cocaine or social interaction CPP and tested for eventual persisting preference 7 and 14 days after CPP expression, cocaine preference was persistent, but social preference was abolished after the first test. These results suggest that PKA in the NAc is involved in drug reward learning that might lead to addiction and that only drug, but not natural, reward is persistent.


2017 ◽  
Vol 114 (33) ◽  
pp. 8865-8870 ◽  
Author(s):  
Daniel T. Kashima ◽  
Brad A. Grueter

Behavioral manifestations of drug-seeking behavior are causally linked to alterations of synaptic strength onto nucleus accumbens (NAc) medium spiny neurons (MSN). Although neuron-driven changes in physiology and behavior are well characterized, there is a lack of knowledge of the role of the immune system in mediating such effects. Toll-like receptor 4 (TLR4) is a pattern recognition molecule of the innate immune system, and evidence suggests that it modulates drug-related behavior. Using TLR4 knockout (TLR4.KO) mice, we show that TLR4 plays a role in NAc synaptic physiology and behavior. In addition to differences in the pharmacological profile of N-methyl-d-aspartate receptors (NMDAR) in the NAc core, TLR4.KO animals exhibit a deficit in low-frequency stimulation-induced NMDAR-dependent long-term depression (LTD). Interestingly, the synaptic difference is region specific as no differences were found in excitatory synaptic properties in the NAc shell. Consistent with altered NAc LTD, TLR4.KO animals exhibit an attenuation in drug reward learning. Finally, we show that TLR4 in the NAc core is primarily expressed on microglia. These results suggest that TLR4 influences NAc MSN synaptic physiology and drug reward learning and behavior.


2021 ◽  
Author(s):  
Rawan AlSubaie ◽  
Ryan W S Wee ◽  
Anne Ritoux ◽  
Karyna Mischanchuk ◽  
Daniel Regester ◽  
...  

ABSTRACTProjections from the basal amygdala (BA) to the ventral hippocampus (vH) are proposed to provide information about the rewarding or threatening nature of learned associations to support appropriate goal-directed and anxiety-like behaviour. Such behaviour occurs via the differential activity of multiple, parallel populations of pyramidal neurons in vH that project to distinct downstream targets, but the nature of BA input and how it connects with these populations is unclear. Using channelrhodopsin-2-assisted circuit mapping in mice, we show that BA input to vH consists of both excitatory and inhibitory projections. Excitatory input specifically targets BA- and nucleus accumbens-projecting vH neurons, and avoids prefrontal cortex-projecting vH neurons; while inhibitory input preferentially targets BA-projecting neurons. Through this specific connectivity, BA inhibitory projections gate place-value associations by controlling the activity of nucleus accumbens-projecting vH neurons. Our results define a parallel excitatory and inhibitory projection from BA to vH that can support goal-directed behaviour.


2015 ◽  
Vol 35 (8) ◽  
pp. 3470-3477 ◽  
Author(s):  
F. Ramirez ◽  
J. M. Moscarello ◽  
J. E. LeDoux ◽  
R. M. Sears

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rawan AlSubaie ◽  
Ryan WS Wee ◽  
Anne Ritoux ◽  
Karyna Mishchanchuk ◽  
Jessica Passlack ◽  
...  

Projections from the basal amygdala (BA) to the ventral hippocampus (vH) are proposed to provide information about the rewarding or threatening nature of learned associations to support appropriate goal-directed and anxiety-like behaviour. Such behaviour occurs via the differential activity of multiple, parallel populations of pyramidal neurons in vH that project to distinct downstream targets, but the nature of BA input and how it connects with these populations is unclear. Using channelrhodopsin-2-assisted circuit mapping in mice, we show that BA input to vH consists of both excitatory and inhibitory projections. Excitatory input specifically targets BA- and nucleus accumbens-projecting vH neurons, and avoids prefrontal cortex-projecting vH neurons; while inhibitory input preferentially targets BA-projecting neurons. Through this specific connectivity, BA inhibitory projections gate place-value associations by controlling the activity of nucleus accumbens-projecting vH neurons. Our results define a parallel excitatory and inhibitory projection from BA to vH that can support goal-directed behaviour.


Sign in / Sign up

Export Citation Format

Share Document