PS-341–mediated selective targeting of multiple myeloma cells by synergistic increase in ionizing radiation-induced apoptosis

2005 ◽  
Vol 33 (7) ◽  
pp. 784-795 ◽  
Author(s):  
Apollina Goel ◽  
Angela Dispenzieri ◽  
Philip R. Greipp ◽  
Thomas E. Witzig ◽  
Ruben A. Mesa ◽  
...  
Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 416-424 ◽  
Author(s):  
Mary L. Kelly ◽  
Yan Tang ◽  
Nitsa Rosensweig ◽  
Sanda Clejan ◽  
Barbara S. Beckman

Abstract Protein kinase C (PKC) activity has a recognized role in mediating apoptosis. However, the role of individual PKC isoforms in apoptosis is poorly defined. Therefore, we investigated the translocation of individual PKC isoforms during radiation-induced apoptosis with and without rescue from apoptosis by granulocyte-macrophage colony-stimulating factor (GM-CSF) in the human erythroleukemia cell line TF-1. PKCα was translocated from the particulate to cytosolic fraction of TF-1 cells within 5 minutes of treatment with apoptosis-inducing levels of ionizing radiation. However, this postirradiation translocation did not occur when cells were rescued from apoptosis by GM-CSF. Furthermore, treatment of cells with Gö6976, an inhibitor of classical PKC isoforms, abrogated the rescue effect of GM-CSF. The calcium-independent novel PKC isoform, PKCδ appeared to be degraded in both the particulate and cytosolic fractions of TF-1 cells after treatment with apoptosis-inducing levels of ionizing radiation in either the presence or absence of GM-CSF rescue. Levels of ceramide, a lipid mediator of apoptosis, were measured at 2, 4, 8, 10, and 60 minutes after treatment with ionizing radiation and were substantially reduced in TF-1 cells rescued from apoptosis by GM-CSF compared with apoptotic TF-1 cells. The largest decrease in ceramide production seen was at 4 minutes postirradiation, with a 46% reduction in ceramide levels in TF-1 cells rescued from apoptosis by GM-CSF compared with those in apoptotic TF-1 cells. Because ceramide has been shown to affect PKCα subcellular distribution, these data implicate a role for ceramide in mediating the rapid postirradiation translocation and inhibition of PKCα in TF-1 cells not rescued from apoptosis by GM-CSF. Expression of the antiapoptotic protein Bcl-2 doubled in TF-1 cells rescued from apoptosis by GM-CSF, but did not increase in unrescued cells. Our findings suggest that activated PKCα and increased expression of Bcl-2 after γ irradiation determine survival in TF-1 cells rescued from apoptosis with GM-CSF and that PKCδ plays a role in mediating signals involved in sensing cellular damage and/or regulation of cell damage repair.


Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3354-3362 ◽  
Author(s):  
Niels W. C. J. van de Donk ◽  
Marloes M. J. Kamphuis ◽  
Berris van Kessel ◽  
Henk M. Lokhorst ◽  
Andries C. Bloem

AbstractHMG-CoA reductase is the rate-limiting enzyme of the mevalonate pathway leading to the formation of cholesterol and isoprenoids such as farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP). The inhibition of HMG-CoA reductase by lovastatin induced apoptosis in plasma cell lines and tumor cells from patients with multiple myeloma. Here we show that cotreatment with mevalonate or geranylgeranyl moieties, but not farnesyl groups, rescued myeloma cells from lovastatin-induced apoptosis. In addition, the inhibition of geranylgeranylation by specific inhibition of geranylgeranyl transferase I (GGTase I) induced the apoptosis of myeloma cells. Apoptosis triggered by the inhibition of geranylgeranylation was associated with reduction of Mcl-1 protein expression, collapse of the mitochondrial transmembrane potential, expression of the mitochondrial membrane protein 7A6, cytochrome c release from mitochondria into the cytosol, and stimulation of caspase-3 activity. These results imply that protein geranylgeranylation is critical for regulating myeloma tumor cell survival, possibly through regulating Mcl-1 expression. Our results show that pharmacologic agents such as lovastatin or GGTase inhibitors may be useful in the treatment of multiple myeloma.


Blood ◽  
2004 ◽  
Vol 103 (5) ◽  
pp. 1829-1837 ◽  
Author(s):  
Karène Mahtouk ◽  
Michel Jourdan ◽  
John De Vos ◽  
Catherine Hertogh ◽  
Geneviève Fiol ◽  
...  

Abstract We previously found that some myeloma cell lines express the heparin-binding epidermal growth factor–like growth factor (HB-EGF) gene. As the proteoglycan syndecan-1 is an HB-EGF coreceptor as well as a hallmark of plasma cell differentiation and a marker of myeloma cells, we studied the role of HB-EGF on myeloma cell growth. The HB-EGF gene was expressed by bone marrow mononuclear cells in 8 of 8 patients with myeloma, particularly by monocytes and stromal cells, but not by purified primary myeloma cells. Six of 9 myeloma cell lines and 9 of 9 purified primary myeloma cells expressed ErbB1 or ErbB4 genes coding for HB-EGF receptor. In the presence of a low interleukin-6 (IL-6) concentration, HB-EGF stimulated the proliferation of the 6 ErbB1+ or ErbB4+ cell lines, through the phosphatidylinositol 3-kinase/AKT (PI-3K/AKT) pathway. A pan-ErbB inhibitor blocked the myeloma cell growth factor activity and the signaling induced by HB-EGF. This inhibitor induced apoptosis of patients'myeloma cells cultured with their tumor environment. It also increased patients' myeloma cell apoptosis induced by an anti–IL-6 antibody or dexamethasone. The ErbB inhibitor had no effect on the interaction between multiple myeloma cells and stromal cells. It was not toxic for nonmyeloma cells present in patients' bone marrow cultures or for the growth of hematopoietic progenitors. Altogether, these data identify ErbB receptors as putative therapeutic targets in multiple myeloma.


2015 ◽  
Vol 24 (11) ◽  
pp. 1342-1351 ◽  
Author(s):  
Xia Xiao ◽  
Hongmei Luo ◽  
Kenneth N. Vanek ◽  
Amanda C. LaRue ◽  
Bradley A. Schulte ◽  
...  

2013 ◽  
Vol 12 (7) ◽  
pp. 1310-1321 ◽  
Author(s):  
Carolyne Bardeleben ◽  
Sanjai Sharma ◽  
Joseph R. Reeve ◽  
Sara Bassilian ◽  
Patrick Frost ◽  
...  

Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 610-618 ◽  
Author(s):  
Inge Tinhofer ◽  
Ingrid Marschitz ◽  
Traudl Henn ◽  
Alexander Egle ◽  
Richard Greil

Interleukin-15 (IL-15) induces proliferation and promotes cell survival of human T and B lymphocytes, natural killer cells, and neutrophils. Here we report the constitutive expression of a functional IL-15 receptor (IL-15R) in 6 of 6 myeloma cell lines and in CD38high/CD45low plasma cells belonging to 14 of 14 patients with multiple myeloma. Furthermore, we detected IL-15 transcripts in all 6 myeloma cell lines, and IL-15 protein in 4/6 cell lines and also in the primary plasma cells of 8/14 multiple myeloma patients. Our observations confirm the existence of an autocrine IL-15 loop and point to the potential paracrine stimulation of myeloma cells by IL-15 released from the cellular microenvironment. Blocking autocrine IL-15 in cell lines increased the rate of spontaneous apoptosis, and the degree of this effect was comparable to the pro-apoptotic effect of depleting autocrine IL-6 by antibody targeting. IL-15 was also capable of substituting for autocrine IL-6 in order to promote cell survival and vice versa. In short-term cultures of primary myeloma cells, the addition of IL-15 reduced the percentage of tumor cells spontaneously undergoing apoptosis. Furthermore, IL-15 lowered the responsiveness to Fas-induced apoptosis and to cytotoxic treatment with vincristine and doxorubicin but not with dexamethasone. These data add IL-15 to the list of important factors promoting survival of multiple myeloma cells and demonstrate that it can be produced and be functionally active in an autocrine manner.


Sign in / Sign up

Export Citation Format

Share Document