Recipient total bone marrow irradiation has no long-term effect on clonal behavior of transplanted murine hematopoietic stem cells

2014 ◽  
Vol 42 (8) ◽  
pp. S64
Author(s):  
Evgenia Verovskaya ◽  
Ronald van Os ◽  
Taco Koster ◽  
Erik Zwart ◽  
Martha Ritsema ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3194-3194
Author(s):  
George L. Chen ◽  
Kotung Chang ◽  
Xiaosong Huang ◽  
Gerald J. Spangrude ◽  
Josef T. Prchal

Abstract Murine hematopoietic stem cells (HSC) transfected with a gain-of-function human erythropoietic receptor (EPOR) transgene were reported to have a competitive advantage over wild type mouse hematopoietic stem cells in a bone marrow transplantation (BMT) model (Kirby, Blood95(12): 3710, 2000). However, EPOR transgenes may not be normally expressed in early progenitor/stem cells. Moreover, whether Epo/EpoR signaling plays a role in hematopoietic stem cell engraftment is unknown. Our lab previously created mouse models harboring the wild type human EPOR (wthEPOR) or the mutant human gain-of-function EPOR (mthEPOR) gene knocked into the mouse EPOR locus (Divoky, PNAS 98(3): 986, 2001). This animal model has augmented Epo signaling in all tissues that express EpoR, thus the wthEPOR mice are anemic while the mthEPOR mice are polycythemic. We compared the relative engraftment efficiency of mthEPOR vs. wthEPOR HSCs in a competitive bone marrow transplantation (BMT) assay using C57/Bl6 congenic mice. Bone marrow from wthEPOR (CD45.1) and mthEPOR (CD45.2) mice were co-transplanted (1:1) into lethally irradiated (137Cs > 11Gy split) normal recipients (CD45.1/CD45.2). At 7 months after transplantation, peripheral blood chimerism demonstrated skewing towards wthEPOR rather than mthEPOR origin in the granulocyte, macrophage, T cell, and B cell compartments (Data Table). Bone marrow chimerism paralleled peripheral blood chimerism (not shown). Examination of the stem cell compartment by Hoechst 33342 staining demonstrated similar skewing towards wthEPOR origin (Data Table). Because unequal numbers of HSC may result in skewed chimerism, we examined the relative proportions of HSC to total bone marrow cells. In wthEPOR mice, the Flt3− Rh123low subset of cKit+Sca1+ cells (KLS-FS) cells represented 0.011±0.003% of total bone marrow cells while in mthEPOR mice these cells represented 0.023±0.006% of total bone marrow cells (p=0.025). Since equal numbers of wthEPOR and mthEPOR total bone marrow cells were co-transplanted, relatively fewer wthEPOR HSC than mthEPOR HSC were transferred. Taken with the above chimerism data showing skewing towards wthEPOR, these results suggest that wthEPOR HSCs have a significant engraftment advantage over mthEPOR HSCs. Furthermore, enhanced Epo/EpoR signaling may interfere with the long term repopulation of hematopoietic progenitors. Hematopoietic stem cells undergo self renewal or differentiation/proliferation; in the presence of erythropoietin, a cytokine with proliferative and differentiating properties, it may be that self renewal is suppressed leading ultimately to the observed skewed chimerism. These data suggest that erythropoietin administration to patients during and immediately after marrow transplantation may be detrimental and should be used judiciously. Peripheral Blood and Marrow Chimerism Compartment wthEPOR (CD45.1) mthEPOR (CD45.2) Endogenous control (CD45.1/CD45.2) All p values for wthEPOR vs mthEPOR < 0.01 Neutrophil (blood) 72.7% 18.8% 8.5% Macrophage (blood) 76.8% 14.7% 8.5% T cell (blood) 78.6% 9.3% 12.2% B cell (blood) 72.8% 17.7% 9.5% HSC (marrow) 66% 15.1% 18.9%


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-31
Author(s):  
Maria Rosa Lidonnici ◽  
Giulia Chianella ◽  
Francesca Tiboni ◽  
Matteo Barcella ◽  
Ivan Merelli ◽  
...  

Background Beta-thalassemia (Bthal) is a genetic disorder due to mutations in the ß-globin gene, leading to a reduced or absent production of HbA, which interferes with erythroid cell maturation and limits normal red cell production. Patients are affected by severe anemia, hepatosplenomegaly, and skeletal abnormalities due to rapid expansion of the erythroid compartment in bone marrow (BM) caused by ineffective erythropoiesis. In a classical view of hematopoiesis, the blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. In human, novel purification strategies based on differential expression of CD49f and CD90 enrich for long-term (49f+) and short-term (49f−) repopulating hematopoietic stem cells (HSCs), with distinct cell cycle properties, but similar myeloid (My) and lymphoid (Ly) potential. In this view, it has been proposed that erythroid (Ery) and megakaryocytic (Mk) fates branch off directly from CD90-/49f− multipotent progenitors (MPPs). Recently, a new study suggested that separation between multipotent (Ery/My/Ly) long-term repopulating cells (Subset1, defined as CLEC9AhighCD34low) and cells with only My/Ly and no Ery potential (Subset2, defined as CLEC9AlowCD34high)occurs within the phenotypic HSC/MPP and CD49f+ HSCs compartment. Aims A general perturbed and stress condition is present in the thalassemic BM microenvironment. Since its impact on the hematopoietic cell subpopulations is mostly unknown, we will investigate which model of hematopoiesis/erythropoiesis occurs in Bthal. Moreover, since Beta-Thalassemia is an erythropoietic disorder, it could be considered as a disease model to study the 'erythroid branching' in the hematopoietic hierarchy. Methods We defined by immunophenotype and functional analysis the lineage commitment of most primitive HSC/MPP cells in patients affected by this pathology compared to healthy donors (HDs). Furthermore, in order to delineate the transcriptional networks governing hematopoiesis in Beta-thalassemia, RNAseq analysis was performed on sorted hematopoietic subpopulations from BM of Bthal patients and HDs. By droplet digital PCR on RNA purified from mesenchymal stromal cells of Bthal patients, we evaluated the expression levels of some niche factors involved in the regulation of hematopoiesis and erythropoiesis. Moreover, the protein levels in the BM plasma were analyzed by performing ELISA. Results Differences in the primitive compartment were observed with an increased proportion of multipotent progenitors in Bthal patients compared to HDs. The Subset1 compartment is actually endowed with an enhanced Ery potential. Focusing on progenitors (CD34+ CD38+) and using a new sorting scheme that efficiently resolved My, Ery, and Mk lineage fates, we quantified the new My (CD71-BAH1-/+) and Ery (CD71+ BAH1-/+) subsets and found a reduction of Ery subset in Bthal samples. We can hypothesize that the erythroid-enriched subsets are more prone to differentiate quickly due to the higher sensitivity to Epo stimuli or other bone marrow niche signals. Gene set enrichment analysis, perfomed on RNAseq data, showed that Bthal HSC/MPP presented negative enrichment of several pathways related to stemness and quiescence. Cellular processes involved in erythropoiesis were found altered in Bthal HSC. Moreover, some master erythroid transcription factors involved were overrepresented in Bthal across the hematopoietic cascade. We identified the niche factors which affect molecular pathways and the lineage commitment of Bthal HSCs. Summary/Conclusions Overall, these data indicate that Bthal HSCs are more cycling cells which egress from the quiescent state probably towards an erythroid differentiation, probably in response to a chronic BM stimulation. On the other hand,some evidences support our hypothesis of an 'erythroid branching' already present in the HSC pool, exacerbated by the pathophysiology of the disease. Disclosures No relevant conflicts of interest to declare.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e50849 ◽  
Author(s):  
Yuko Goto-Koshino ◽  
Yumi Fukuchi ◽  
Fumi Shibata ◽  
Daichi Abe ◽  
Kana Kuroda ◽  
...  

Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1442-1449 ◽  
Author(s):  
CM Verfaillie ◽  
JS Miller

Abstract Human hematopoietic stem cells are thought to express the CD34 stem cell antigen, low numbers of HLA-DR and Thy1 antigens, but no lineage commitment antigens, CD38, or CD45RA antigens. However, fluorescence- activated cell sorted CD34+ subpopulations contain not more than 1% to 5% primitive progenitors capable of initiating and sustaining growth in long-term bone marrow culture initiating cells (LTBMC-ICs). We have recently shown that culture of fresh human marrow CD34+/HLA-DR- cells separated from a stromal layer by a microporous membrane (“stroma- noncontact” culture) results in the maintenance of 40% of LTBMC-ICs. We hypothesized that reselection of CD34+ subpopulations still present after several weeks in stroma-noncontact cultures may result in the selection of cells more highly enriched for human LTBMC-ICs. Fresh marrow CD34+/HLA-DR- cells were cultured for 2 to 3 weeks in stroma- noncontact cultures. Cultured progeny was then sorted on the basis of CD34, HLA-DR, or CD33 antigen expression, and sorted cells evaluated for the presence of LTBMC-ICs by limiting dilution analysis. We show that (1) LTBMC-ICs are four times more frequent in cultured CD34+/HLA- DR- cells (4.6% +/- 1.7%) than in cultured CD34+/HLA-DR- cells (1.3% +/- 0.4%). This suggests that HLA-DR antigen expression may depend on the activation status of primitive cells rather than their lineage commitment. We then sorted cultured cells on the basis of the myeloid commitment antigen, CD33. (2) These studies show that cultured CD34+/CD33- cells contain 4% to 8% LTBMC-ICs, whereas cultured CD34+/CD33+bright cells contain only 0.1% +/- 0.03% LTBMC-ICs. Because LTBMC-ICs are maintained significantly better in stroma-noncontact cultures supplemented with macrophage inflammatory protein 1 alpha (MIP- 1 alpha) and interleukin-3 (IL-3) (Verfaillie et al, J Exp Med 179:643, 1994), we evaluated the frequency of LTBMC-ICs in CD34+/CD33- cells present in such cultures. (3) CD34+/CD33- cells present in MIP-1 alpha + IL-3-supplemented cultures contain up to 30% LTBMC-ICs. The increased frequency of LTBMC-ICs in cultured CD34+ subpopulations may be the result of terminal differentiation of less primitive progenitors, loss of cells that fail to respond to the culture conditions or recruitment of quiescent LTBMC-ICs. The capability to select progenitor populations containing up to 30% LTBMC-ICs should prove useful in studies examining the growth requirements, self-renewal, and multilineage differentiation capacity of human hematopoietic stem cells at the single-cell level.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 74-83 ◽  
Author(s):  
SJ Szilvassy ◽  
S Cory

Abstract Efficient gene delivery to multipotential hematopoietic stem cells would greatly facilitate the development of effective gene therapy for certain hematopoietic disorders. We have recently described a rapid multiparameter sorting procedure for significantly enriching stem cells with competitive long-term lymphomyeloid repopulating ability (CRU) from 5-fluorouracil (5-FU)-treated mouse bone marrow. The sorted cells have now been tested as targets for retrovirus-mediated delivery of a marker gene, NeoR. They were cocultured for 4 days with fibroblasts producing a high titer of retrovirus in medium containing combinations of the hematopoietic growth factors interleukin-3 (IL-3), IL-6, c-kit ligand (KL), and leukemia inhibitory factor (LIF) and then injected into lethally irradiated recipients, together with sufficient “compromised” bone marrow cells to provide short-term support. Over 80% of the transplanted mice displayed high levels (> or = 20%) of donor- derived leukocytes when analyzed 4 to 6 months later. Proviral DNA was detected in 87% of these animals and, in half of them, the majority of the hematopoietic cells were marked. Thus, infection of the stem cells was most effective. The tissue and cellular distribution of greater than 100 unique clones in 55 mice showed that most sorted stem cells had lymphoid as well as myeloid repopulating potential. Secondary transplantation provided strong evidence for infection of very primitive stem cells because, in several instances, different secondary recipients displayed in their marrow, spleen, thymus and day 14 spleen colony-forming cells the same proviral integration pattern as the primary recipient. Neither primary engraftment nor marking efficiency varied for stem cells cultured in IL-3 + IL-6, IL-3 + IL-6 + KL, IL-3 + IL-6 + LIF, or all four factors, but those cultured in IL-3 + IL-6 + LIF appeared to have lower secondary engraftment potential. Provirus expression was detected in 72% of the strongly marked mice, albeit often at low levels. Highly efficient retroviral marking of purified lymphomyeloid repopulating stem cells should enhance studies of stem cell biology and facilitate analysis of genes controlling hematopoietic differentiation and transformation.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1200-1200
Author(s):  
Hui Yu ◽  
Youzhong Yuan ◽  
Xianmin Song ◽  
Feng Xu ◽  
Hongmei Shen ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are significantly restricted in their ability to regenerate themselves in the irradiated hosts and this exhausting effect appears to be accelerated in the absence of the cyclin-dependent kinase inhibitor (CKI), p21. Our recent study demonstrated that unlike p21 absence, deletion of the distinct CKI, p18 results in a strikingly positive effect on long-term engraftment owing to increased self-renewing divisions in vivo (Yuan et al, 2004). To test the extent to which enhanced self-renewal in the absence of p18 can persist over a prolonged period of time, we first performed the classical serial bone marrow transfer (sBMT). The activities of hematopoietic cells from p18−/− cell transplanted mice were significantly higher than those from p18+/+ cell transplanted mice during the serial transplantation. To our expectation, there was no detectable donor p18+/+ HSC progeny in the majority (4/6) of recipients after three rounds of sBMT. However, we observed significant engraftment levels (66.7% on average) of p18-null progeny in all recipients (7/7) within a total period of 22 months. In addition, in follow-up with our previous study involving the use of competitive bone marrow transplantation (cBMT), we found that p18−/− HSCs during the 3rd cycle of cBMT in an extended long-term period of 30 months were still comparable to the freshly isolated p18+/+ cells from 8 week-old young mice. Based on these two independent assays and the widely-held assumption of 1-10/105 HSC frequency in normal unmanipulated marrow, we estimated that p18−/− HSCs had more than 50–500 times more regenerative potential than p18+/+ HSCs, at the cellular age that is equal to a mouse life span. Interestingly, p18 absence was able to significantly loosen the accelerated exhaustion of hematopoietic repopulation caused by p21 deficiency as examined in the p18/p21 double mutant cells with the cBMT model. This data directly indicates the opposite effect of these two molecules on HSC durability. To define whether p18 absence may override the regulatory mechanisms that maintain the HSC pool size within the normal range, we performed the transplantation with 80 highly purified HSCs (CD34-KLS) and then determined how many competitive reconstitution units (CRUs) were regenerated in the primary recipients by conducting secondary transplantation with limiting dilution analysis. While 14 times more CRUs were regenerated in the primary recipients transplanted with p18−/−HSCs than those transplanted with p18+/+ HSCs, the level was not beyond that found in normal non-transplanted mice. Therefore, the expansion of HSCs in the absence of p18 is still subject to some inhibitory regulation, perhaps exerted by the HSC niches in vivo. Such a result was similar to the effect of over-expression of the transcription factor, HoxB4 in hematopoietic cells. However, to our surprise, the p18 mRNA level was not significantly altered by over-expression of HoxB4 in Lin-Sca-1+ cells as assessed by real time PCR (n=4), thereby suggesting a HoxB4-independent transcriptional regulation on p18 in HSCs. Taken together, our current results shed light on strategies aimed at sustaining the durability of therapeutically transplanted HSCs for a lifetime treatment. It also offers a rationale for the feasibility study intended to temporarily target p18 during the early engraftment for therapeutic purposes.


Sign in / Sign up

Export Citation Format

Share Document