RECONSTITUTION OF T LYMPHOPOIESIS FROM PLURIPOTENT STEM CELLS BY DEFINED TRANSCRIPTION FACTORS

2019 ◽  
Vol 76 ◽  
pp. S54
Author(s):  
Rongqun Guo ◽  
Fangxiao hu ◽  
Qitong Weng ◽  
Cui Lv ◽  
Hongling Wu ◽  
...  
Author(s):  
Kee-Pyo Kim ◽  
Dong Wook Han ◽  
Johnny Kim ◽  
Hans R. Schöler

AbstractEctopic expression of Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). Attempts to identify genes or chemicals that can functionally replace each of these four reprogramming factors have revealed that exogenous Oct4 is not necessary for reprogramming under certain conditions or in the presence of alternative factors that can regulate endogenous Oct4 expression. For example, polycistronic expression of Sox2, Klf4 and c-Myc can elicit reprogramming by activating endogenous Oct4 expression indirectly. Experiments in which the reprogramming competence of all other Oct family members tested and also in different species have led to the decisive conclusion that Oct proteins display different reprogramming competences and species-dependent reprogramming activity despite their profound sequence conservation. We discuss the roles of the structural components of Oct proteins in reprogramming and how donor cell epigenomes endow Oct proteins with different reprogramming competences.


2019 ◽  
Author(s):  
Rongqun Guo ◽  
Fangxiao Hu ◽  
Qitong Weng ◽  
Cui Lv ◽  
Hongling Wu ◽  
...  

ABSTRACTAchievement of immunocompetent and therapeutic T lymphopoiesis from pluripotent stem cells is a central aim in T cell regenerative medicine. To date, preferentially regenerating T lymphopoiesis in vivo from pluripotent stem cells (PSC) remains a practical challenge. Here we documented that synergistic and transient expression of Runx1 and Hoxa9 restricted in the time window of endothelial to hematopoietic transition and hematopoietic maturation stages induced in vitro from PSC (iR9-PSC) preferentially generated engraftable hematopoietic progenitors capable of homing to thymus and developing into mature T (iT) cells in primary and secondary immunodeficient recipients. Single-cell transcriptome and functional analyses illustrated the cellular trajectory of T lineage induction from PSC, unveiling the T-lineage specification determined at as early as hemogenic endothelial cell stage and identifying the bona fide pre-thymic progenitors. The iT cells distributed normally in central and peripheral lymphoid organs and exhibited abundant TCRαβ repertoire. The regenerative T lymphopoiesis rescued the immune-surveillance ability in immunodeficient mice. Furthermore, gene-edited iR9-PSC produced tumor-specific-T cells in vivo that effectively eradicated tumor cells. This study provides insight into universal generation of functional and therapeutic T lymphopoiesis from the unlimited and editable PSC source.


2020 ◽  
Vol 5 (1) ◽  
pp. 1-4 ◽  
Author(s):  
David Septian Sumanto Marpaung ◽  
Ayu Oshin Yap Sinaga

The four transcription factors OCT4, SOX2, KLF4 and c-MYC are highly expressed in embryonic stem cells (ESC) and their overexpression can induce pluripotency, the ability to differentiate into all cell types of an organism. The ectopic expression such transcription factors could reprogram somatic stem cells become induced pluripotency stem cells (iPSC), an embryonic stem cells-like. Production of recombinant pluripotency factors gain interests due to high demand from generation of induced pluripotent stem cells in regenerative medical therapy recently. This review will focus on demonstrate the recent advances in recombinant pluripotency factor production using various host.


2019 ◽  
Vol 15 (6) ◽  
pp. 383-398 ◽  
Author(s):  
Yannick Tauran ◽  
Stéphane Poulain ◽  
Myriam Lereau-Bernier ◽  
Mathieu Danoy ◽  
Marie Shinohara ◽  
...  

Human induced pluripotent stem cells have been investigated through a sequential in vitro step-by-step differentiation into hepatocyte-like cells using nanoCAGE, an original method for promoters, transcription factors, and transcriptome analysis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1206-1206
Author(s):  
Keiki Kumano ◽  
Shunya Arai ◽  
Koki Ueda ◽  
Kumi Nakazaki ◽  
Yasuhiko Kamikubo ◽  
...  

Abstract Abstract 1206 Introduction: Induced pluripotent stem cells (iPSCs) can be generated from various cell types by the expression of defined transcription factors. In addition to the regenerative medicine, iPSCs have been used for the study of the pathogenesis of inherited genetic disease. Recently, it was reported that iPSCs were generated not only from normal tissue, but also from malignant cells. In those cases, cancer cells themselves must be the starting material from which iPSCs are derived. However, in almost all the cases, they used the established cell lines (chronic myelogenous leukemia (CML), gastrointestinal cancers, and melanoma) except for the JAK2-V617F mutation (+) polycythemia vera (PV) patient. In this study, we established the iPSCs from primary CML patient sample. Results: After obtaining informed consent, bone marrow cells from CML patient were reprogrammed by introducing the transcription factors Oct3/4, Sox2, KLF4, and c-myc. To improve the efficiency of the development of iPSCs, we added valproic acid (VPA), a histone deacetylase inhibitor, to the culture. Two CML derived iPSCs (CML-iPSCs) were generated. CML-iPSCs expressed the pluripotency markers such as SSEA-4 and Tra-1-60, and the endogenous expression of embryonic stem cell (ESC) characteristic transcripts (Oct3/4, Sox2, KLF4, Nanog, LIN28, REX1) was confirmed by RT-PCR. Oct4 and Nanog promoter regions were demetylated in the CML-iPSCs. Although CML-iPSCs expressed bcr-abl, they were resistant to the imatinib. Then we differentiated them into hematopoietic progenitors within the ‘unique sac-like structures’ (iPS-sacs). This method was reported to be able to produce the hematopoietic progenitors with higher efficiency than the usual embryoid body formation method using human ESCs (Takayama et al., Blood, 111, 5298–306, 2008). The hematopoietic progenitors showed the hematopoietic marker CD45 and immature marker CD34, and recovered the sensitivity to the imatinib, which recapitulated the feature of initial CML disease. Then we investigated the mechanism of the resistance to the imatinib in CML-iPSCs. The phosphorylation state of ERK1/2, AKT, and STAT5, which are the essential for the survival of bcr-abl (+) hematopoietic progenitors, were evaluated after imatinib treatment in CML-iPSCs. The phosphorylation of ERK1/2 and AKT, which were also essential for the maintenance of iPSCs, were unchanged after treatment, although STAT5 was not activated both before and after treatment. These results showed that the signaling for iPSCs maintenance compensated for the inhibition of bcr-abl in CML-iPSCs and that the oncogene addiction was lost in CML-iPSCs. Conclusion: We generated the iPSCs from primary CML patient samples, re-differentiated them into hematopoietic lineage and showed the recapitulation of the features of initial disease. Primary samples of hematological malignancy are usually difficult to be expanded. However, if once they are reprogrammed to iPSCs, they can expand unlimitedly. As a result, we can obtain the genetically abnormal hematopoietic cells continuously by re-differentiating them into hematopoietic cells and use them for the studies which require the large number of living cells such as the analysis for leukemia stem cells or drug screening. Thus iPSCs technology would be useful for the study of hematological malignancy, especially for which animal model was not established such as myelodysplastic syndrome and be applicable for other cancers than hematological malignancies. We are now trying to establish the iPSCs derived from other hematological malignancies. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document