scholarly journals A mini review on production of pluripotency factors (Oct4, Sox2, Klf4 and c-Myc) through recombinant protein technology

2020 ◽  
Vol 5 (1) ◽  
pp. 1-4 ◽  
Author(s):  
David Septian Sumanto Marpaung ◽  
Ayu Oshin Yap Sinaga

The four transcription factors OCT4, SOX2, KLF4 and c-MYC are highly expressed in embryonic stem cells (ESC) and their overexpression can induce pluripotency, the ability to differentiate into all cell types of an organism. The ectopic expression such transcription factors could reprogram somatic stem cells become induced pluripotency stem cells (iPSC), an embryonic stem cells-like. Production of recombinant pluripotency factors gain interests due to high demand from generation of induced pluripotent stem cells in regenerative medical therapy recently. This review will focus on demonstrate the recent advances in recombinant pluripotency factor production using various host.

Reproduction ◽  
2010 ◽  
Vol 139 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Amy Ralston ◽  
Janet Rossant

The flurry of recent publications regarding reprogramming of mature cell types to induced pluripotent stem cells raises the question: what exactly is pluripotency? A functional definition is provided by examination of the developmental potential of pluripotent stem cell types. Defining pluripotency at the molecular level, however, can be a greater challenge. Here, we examine the emerging list of genes associated with induced pluripotency, with particular attention to their functional requirement in the mouse embryo. Knowledge of the requirement for these genes in the embryo and in embryonic stem cells will advance our understanding of how to reverse the developmental clock for therapeutic benefit.


2017 ◽  
Author(s):  
Adekunle Ebenezer Omole ◽  
Adegbenro Omotuyi John Fakoya

The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka in 2006 was heralded as a major breakthrough of the decade in stem cell research. The ability to reprogrammed human somatic cells to a pluripotent embryonic stem cell-like state through the ectopic expression of a combination of embryonic transcription factors was greeted with great excitement by scientists and bioethicists. The reprogramming technology offers the opportunity to generate patient-specific stem cells for modeling human diseases, drug development and screening, and individualized regenerative cell therapy. However, fundamental questions have been raised regarding the molecular mechanism of iPSCs generation, a process still poorly understood by scientists. The efficiency of reprogramming of iPSCs remains low due to the effect of various barriers of reprogramming. There is also the risk of chromosomal instability and oncogenic transformation associated with the use of viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming transcription factors by integration in the host cell genome. These challenges can hinder the therapeutic prospects and promise of iPSCs and their clinical applications. Consequently, extensive studies have been done to elucidate the molecular mechanism of reprogramming and novel strategies have been identified which help to improve the efficiency of reprogramming methods and overcome the safety concerns linked with iPSCs generation. Distinct barriers and enhancers of reprogramming have been elucidated and non-integrating reprogramming methods have been reported. Here, we summarize the progress and the recent advances that have been made over the last 10 years in the iPSCs field, with emphasis on the molecular mechanism of reprogramming, strategies to improve the efficiency of reprogramming, characteristics and limitations of iPSCs, and the progress made in the applications of iPSCs in the field of disease modelling, drug discovery and regenerative medicine. Additionally, this study appraised the role of genomic editing technology in the generation of healthy iPSCs.


2017 ◽  
Author(s):  
Adekunle Ebenezer Omole ◽  
Adegbenro Omotuyi John Fakoya

The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka in 2006 was heralded as a major breakthrough of the decade in stem cell research. The ability to reprogrammed human somatic cells to a pluripotent embryonic stem cell-like state through the ectopic expression of a combination of embryonic transcription factors was greeted with great excitement by scientists and bioethicists. The reprogramming technology offers the opportunity to generate patient-specific stem cells for modeling human diseases, drug development and screening, and individualized regenerative cell therapy. However, fundamental questions have been raised regarding the molecular mechanism of iPSCs generation, a process still poorly understood by scientists. The efficiency of reprogramming of iPSCs remains low due to the effect of various barriers of reprogramming. There is also the risk of chromosomal instability and oncogenic transformation associated with the use of viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming transcription factors by integration in the host cell genome. These challenges can hinder the therapeutic prospects and promise of iPSCs and their clinical applications. Consequently, extensive studies have been done to elucidate the molecular mechanism of reprogramming and novel strategies have been identified which help to improve the efficiency of reprogramming methods and overcome the safety concerns linked with iPSCs generation. Distinct barriers and enhancers of reprogramming have been elucidated and non-integrating reprogramming methods have been reported. Here, we summarize the progress and the recent advances that have been made over the last 10 years in the iPSCs field, with emphasis on the molecular mechanism of reprogramming, strategies to improve the efficiency of reprogramming, characteristics and limitations of iPSCs, and the progress made in the applications of iPSCs in the field of disease modelling, drug discovery and regenerative medicine. Additionally, this study appraised the role of genomic editing technology in the generation of healthy iPSCs.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4370 ◽  
Author(s):  
Adekunle Ebenezer Omole ◽  
Adegbenro Omotuyi John Fakoya

The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka in 2006 was heralded as a major breakthrough of the decade in stem cell research. The ability to reprogram human somatic cells to a pluripotent embryonic stem cell-like state through the ectopic expression of a combination of embryonic transcription factors was greeted with great excitement by scientists and bioethicists. The reprogramming technology offers the opportunity to generate patient-specific stem cells for modeling human diseases, drug development and screening, and individualized regenerative cell therapy. However, fundamental questions have been raised regarding the molecular mechanism of iPSCs generation, a process still poorly understood by scientists. The efficiency of reprogramming of iPSCs remains low due to the effect of various barriers to reprogramming. There is also the risk of chromosomal instability and oncogenic transformation associated with the use of viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming transcription factors by integration in the host cell genome. These challenges can hinder the therapeutic prospects and promise of iPSCs and their clinical applications. Consequently, extensive studies have been done to elucidate the molecular mechanism of reprogramming and novel strategies have been identified which help to improve the efficiency of reprogramming methods and overcome the safety concerns linked with iPSC generation. Distinct barriers and enhancers of reprogramming have been elucidated, and non-integrating reprogramming methods have been reported. Here, we summarize the progress and the recent advances that have been made over the last 10 years in the iPSC field, with emphasis on the molecular mechanism of reprogramming, strategies to improve the efficiency of reprogramming, characteristics and limitations of iPSCs, and the progress made in the applications of iPSCs in the field of disease modelling, drug discovery and regenerative medicine. Additionally, this study appraises the role of genomic editing technology in the generation of healthy iPSCs.


2009 ◽  
Vol 1 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Mark Denham ◽  
Jessie Leung ◽  
Cheryl Tay ◽  
Raymond C.B. Wong ◽  
Peter Donovan ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


Author(s):  
Kee-Pyo Kim ◽  
Dong Wook Han ◽  
Johnny Kim ◽  
Hans R. Schöler

AbstractEctopic expression of Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). Attempts to identify genes or chemicals that can functionally replace each of these four reprogramming factors have revealed that exogenous Oct4 is not necessary for reprogramming under certain conditions or in the presence of alternative factors that can regulate endogenous Oct4 expression. For example, polycistronic expression of Sox2, Klf4 and c-Myc can elicit reprogramming by activating endogenous Oct4 expression indirectly. Experiments in which the reprogramming competence of all other Oct family members tested and also in different species have led to the decisive conclusion that Oct proteins display different reprogramming competences and species-dependent reprogramming activity despite their profound sequence conservation. We discuss the roles of the structural components of Oct proteins in reprogramming and how donor cell epigenomes endow Oct proteins with different reprogramming competences.


Sign in / Sign up

Export Citation Format

Share Document