In vivo quantification of spinal and bulbar motor neuron degeneration in the G93A-SOD1 transgenic mouse model of ALS by T2 relaxation time and apparent diffusion coefficient

2006 ◽  
Vol 201 (2) ◽  
pp. 293-300 ◽  
Author(s):  
H NIESSEN ◽  
F ANGENSTEIN ◽  
K SANDER ◽  
W KUNZ ◽  
M TEUCHERT ◽  
...  
Neuroreport ◽  
2000 ◽  
Vol 11 (15) ◽  
pp. 3333-3336 ◽  
Author(s):  
Lidong Zhu ◽  
Nobuhito Saito ◽  
Osamu Abe ◽  
Toshiyuki Okubo ◽  
Haruyasu Yamada ◽  
...  

1999 ◽  
Vol 19 (12) ◽  
pp. 1354-1364 ◽  
Author(s):  
Menno van Lookeren Campagne ◽  
G. Roger Thomas ◽  
Harold Thibodeaux ◽  
James T. Palmer ◽  
Simon P. Williams ◽  
...  

It has been reported recently that very delayed damage can occur as a result of focal cerebral ischemia induced by vascular occlusion of short duration. With use of diffusion-, T2-, and contrast-enhanced dynamic magnetic resonance imaging (MRI) techniques, the occlusion time dependence together with the temporal profile for this delayed response in a rat model of transient focal cortical ischemia have been established. The distal branch of the middle cerebral artery was occluded for 20, 30, 45, or 90 minutes. Twenty minutes of vascular occlusion with reperfusion exhibited no significant mean change in either the apparent diffusion coefficient of water (ADC) or the T2 relaxation time at 6, 24, 48, or 72 hours after reperfusion ( P = 0.97 and 0.70, respectively). Ninety minutes of ischemia caused dramatic tissue injury at 6 hours, as indicated by an increase in T2 relaxation times to 135% of the contralateral values ( P < 0.01). However, at intermediate periods of ischemia (30 to 45 minutes), complete reversal of the ADC was seen at 6 hours after reperfusion but was followed by a secondary decline over time, such that a 25% reduction in tissue ADC was seen at 24 as compared with 6 hours ( P < 0.02). This secondary response was accompanied by an increase in cerebral blood volume (CBV), as shown by contrast-enhanced dynamic MRI (120% of contralateral values; P < 0.001), an increase in T2 relaxation time (132%; P < 0.01), together with clear morphological signs of cell death. By day 18, the mean volume of missing cortical tissue measured with high-resolution MRI in animals occluded for 30 and 45 minutes was 50% smaller than that in 90-minute occluded animals ( P < 0.005). These data show that ultimate infarct size is reduced after early reperfusion and is occlusion time dependent. The early tissue recovery that is seen with intermediate occlusion times can be followed by cell death, which has a delayed onset and is accompanied by an increase in CBV.


2007 ◽  
Vol 17 (4) ◽  
pp. 230-238 ◽  
Author(s):  
Xiao-Qi Ding ◽  
Jürgen Finsterbusch ◽  
Oliver Wittkugel ◽  
Christian Saager ◽  
Einar Goebell ◽  
...  

2020 ◽  
Author(s):  
Dokwan Lee ◽  
Ki-Taek Hong ◽  
Tae Seong Lim ◽  
Eugene Lee ◽  
Ye Hyun Lee ◽  
...  

Abstract Background: The role of altered joint mechanics on cartilage degeneration in in vivo models has not been studied successfully due to a lack of pre-injury information. We aimed 1) to develop an accurate in vivo canine model to measure the changes in joint loading and T2 star (T2*) relaxation time before and after unilateral supraspinatus tendon resections, and 2) to find the relationship between regional variations in articular cartilage loading patterns and T2* relaxation time distributions.Methods: Rigid markers were implanted in the scapula and humerus of tested dogs. The movement of the shoulder bones were measured by a motion tracking system during normal gaits. In vivo cartilage contact strain was measured by aligning 3D shoulder models with the motion tracking data. Articular cartilage T2* relaxation times were measured by quantitative MRI scans. Articular cartilage contact strain and T2* relaxation time were compared in the shoulders before and three months after the supraspinatus tendon resections.Results: Excellent accuracy and reproducibility were found in our in vivo contact strain measurements with less than 1% errors. Changes in articular cartilage contact strain exhibited similar patterns with the changes in the T2* relaxation time after resection surgeries. Regional changes in the articular cartilage T2* relaxation time exhibited positive correlations with regional contact strain variations three months after the supraspinatus resection surgeries.Conclusion: This is the first study to measure in vivo articular cartilage contact strains with high accuracy and reproducibility. Positive correlations between contact strain and T2* relaxation time suggest that the articular cartilage extracellular matrix may responds to mechanical changes in local areas.


Sign in / Sign up

Export Citation Format

Share Document