scholarly journals Subthalamic beta oscillations correlate with dopaminergic degeneration in experimental parkinsonism

2021 ◽  
Vol 335 ◽  
pp. 113513
Author(s):  
Jens K. Haumesser ◽  
Maximilian H. Beck ◽  
Franziska Pellegrini ◽  
Johanna Kühn ◽  
Wolf-Julian Neumann ◽  
...  
2017 ◽  
Vol 292 ◽  
pp. 11-20 ◽  
Author(s):  
Cyril Monnot ◽  
Xiaoqun Zhang ◽  
Sahar Nikkhou-Aski ◽  
Peter Damberg ◽  
Per Svenningsson

2021 ◽  
Vol 83 ◽  
pp. 69-76
Author(s):  
Satoko Nakajima ◽  
Nana Saeki ◽  
Haruna Tamano ◽  
Ryusuke Nishio ◽  
Misa Katahira ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 455-474
Author(s):  
Per Borghammer

A new model of Parkinson’s disease (PD) pathogenesis is proposed, the α-Synuclein Origin site and Connectome (SOC) model, incorporating two aspects of α-synuclein pathobiology that impact the disease course for each patient: the anatomical location of the initial α-synuclein inclusion, and α-synuclein propagation dependent on the ipsilateral connections that dominate connectivity of the human brain. In some patients, initial α-synuclein pathology occurs within the CNS, leading to a brain-first subtype of PD. In others, pathology begins in the peripheral autonomic nervous system, leading to a body-first subtype. In brain-first cases, it is proposed that the first pathology appears unilaterally, often in the amygdala. If α-synuclein propagation depends on connection strength, a unilateral focus of pathology will disseminate more to the ipsilateral hemisphere. Thus, α-synuclein spreads mainly to ipsilateral structures including the substantia nigra. The asymmetric distribution of pathology leads to asymmetric dopaminergic degeneration and motor asymmetry. In body-first cases, the α-synuclein pathology ascends via the vagus to both the left and right dorsal motor nuclei of the vagus owing to the overlapping parasympathetic innervation of the gut. Consequently, the initial α-synuclein pathology inside the CNS is more symmetric, which promotes more symmetric propagation in the brainstem, leading to more symmetric dopaminergic degeneration and less motor asymmetry. At diagnosis, body-first patients already have a larger, more symmetric burden of α-synuclein pathology, which in turn promotes faster disease progression and accelerated cognitive decline. The SOC model is supported by a considerable body of existing evidence and may have improved explanatory power.


Author(s):  
Chen Liu ◽  
Ge Zhao ◽  
Zihan Meng ◽  
Changsong Zhou ◽  
Xiaodong Zhu ◽  
...  

2021 ◽  
Vol 297 (1) ◽  
pp. 100864
Author(s):  
Niharika Amireddy ◽  
Srinivas N. Puttapaka ◽  
Ravali L. Vinnakota ◽  
Halley G. Ravuri ◽  
Swaroop Thonda ◽  
...  

2013 ◽  
Vol 110 (12) ◽  
pp. 2792-2805 ◽  
Author(s):  
C. J. Lobb ◽  
A. K. Zaheer ◽  
Y. Smith ◽  
D. Jaeger

Numerous studies have suggested that alpha-synuclein plays a prominent role in both familial and idiopathic Parkinson's disease (PD). Mice in which human alpha-synuclein is overexpressed (ASO) display progressive motor deficits and many nonmotor features of PD. However, it is unclear what in vivo pathophysiological mechanisms drive these motor deficits. It is also unknown whether previously proposed pathophysiological features (i.e., increased beta oscillations, bursting, and synchronization) described in toxin-based, nigrostriatal dopamine-depletion models are also present in ASO mice. To address these issues, we first confirmed that 5- to 6-mo-old ASO mice have robust motor dysfunction, despite the absence of significant nigrostriatal dopamine degeneration. In the same animals, we then recorded simultaneous single units and local field potentials (LFPs) in the substantia nigra pars reticulata (SNpr), the main basal ganglia output nucleus, and one of its main thalamic targets, the ventromedial nucleus, as well as LFPs in the primary motor cortex in anesthetized ASO mice and their age-matched, wild-type littermates. Neural activity was examined during slow wave activity and desynchronized cortical states, as previously described in 6-hydroxydopamine-lesioned rats. In contrast to toxin-based models, we found a small decrease, rather than an increase, in beta oscillations in the desynchronized state. Similarly, synchronized burst firing of nigral neurons observed in toxin-based models was not observed in ASO mice. Instead, we found more subtle changes in pauses of SNpr firing compared with wild-type control mice. Our results suggest that the pathophysiology underlying motor dysfunction in ASO mice is distinctly different from striatal dopamine-depletion models of parkinsonism.


Sign in / Sign up

Export Citation Format

Share Document