Fungal endophytes in forests, woody plants and grassland ecosystems: diversity, functional ecology and evolution

2007 ◽  
Vol 21 (2-3) ◽  
pp. 49-50 ◽  
Author(s):  
Roger D. Finlay ◽  
Keith Clay
2019 ◽  
Vol 59 (3) ◽  
pp. 535-547 ◽  
Author(s):  
Julieta A Rosell

Abstract Most biological structures carry out multiple functions. Focusing on only one function to make adaptive inferences overlooks that manifold selection pressures and tradeoffs shape the characteristics of a multifunctional structure. Focusing on single functions can only lead to a partial picture of the causes underlying diversity and the evolutionary origin of the structure in question. I illustrate this discussion using bark as a study case. Bark comprises all the tissues surrounding the xylem in woody plants. Broadly, bark includes an inner and mostly living region and an outer, dead one. Of all plant structures, bark has the most complex anatomical structure and ontogenetic origin involving two (and often three) different meristems. Traditionally, the wide diversity in bark traits, mainly bark thickness, has been interpreted as the result of the selective pressures imposed by fire regime. However, recent research has shown that explanations based on fire regime cannot account for salient patterns of bark variation globally including the very strong inner bark thickness–stem diameter scaling, which is likely due to metabolic needs, and the very high intracommunity variation in total, inner, and outer bark thickness, and in inner:outer proportions. Moreover, explanations based on fire disregard that in addition to fire protection, bark carries out several other crucial functions for plants including translocation of photosynthates; storage of starch, soluble sugars, water, and other compounds; protection from herbivores, pathogens, and high temperatures; wound closure, as well as mechanical support, photosynthesis, and likely being involved in xylem embolism repair. All these functions are crucial for plant performance and are involved in synergistic (e.g., storage of water and insulation) and trade-off relationships (e.g., protection from fire vs photosynthetic activity). Focusing on only one of these functions, protection from fire has provided an incomplete picture of the selective forces shaping bark diversity and has severely hindered our incipient understanding of the functional ecology of this crucial region of woody stems. Applying a multifunctional perspective to the study of bark will allow us to address why we observe such high intracommunity variation in bark traits, why some bark trait combinations are ontogenetically impossible or penalized by selection, how bark is coordinated functionally with other plant parts, and as a result, to understand how bark contributes to the vast diversity of plant ecological strategies across the globe.


2013 ◽  
Vol 6 (5) ◽  
pp. 365-378 ◽  
Author(s):  
Matthew K. Lau ◽  
A. Elizabeth Arnold ◽  
Nancy Collins Johnson

2016 ◽  
pp. 233-305 ◽  
Author(s):  
David E. Hume ◽  
Geraldine D. Ryan ◽  
Anaïs Gibert ◽  
Marjo Helander ◽  
Aghafakhr Mirlohi ◽  
...  

2019 ◽  
Vol 32 (7) ◽  
pp. 853-864 ◽  
Author(s):  
Hui-Ling Liao ◽  
Gregory Bonito ◽  
J. Alejandro Rojas ◽  
Khalid Hameed ◽  
Steven Wu ◽  
...  

Mortierella and Ilyonectria genera include common species of soil fungi that are frequently detected as root endophytes in many plants, including Populus spp. However, the ecological roles of these and other endophytic fungi with respect to plant growth and function are still not well understood. The functional ecology of two key taxa from the P. trichocarpa rhizobiome, M. elongata PMI93 and I. europaea PMI82, was studied by coupling forest soil bioassays with environmental metatranscriptomics. Using soil bioassay experiments amended with fungal inoculants, M. elongata was observed to promote the growth of P. trichocarpa. This response was cultivar independent. In contrast, I. europaea had no visible effect on P. trichocarpa growth. Metatranscriptomic studies revealed that these fungi impacted rhizophytic and endophytic activities in P. trichocarpa and induced shifts in soil and root microbial communities. Differential expression of core genes in P. trichocarpa roots was observed in response to both fungal species. Expression of P. trichocarpa genes for lipid signaling and nutrient uptake were upregulated, and expression of genes associated with gibberellin signaling were altered in plants inoculated with M. elongata, but not I. europaea. Upregulation of genes for growth promotion, downregulation of genes for several leucine-rich repeat receptor kinases, and alteration of expression of genes associated with plant defense responses (e.g., jasmonic acid, salicylic acid, and ethylene signal pathways) also suggest that M. elongata manipulates plant defenses while promoting plant growth.


Author(s):  
Tina Christmann ◽  
Bruno H.P. Rosado ◽  
Guillaume Delhaye ◽  
ILAINE MATOS ◽  
Helena Roland ◽  
...  

Aims: Amidst the Campos the Altitude (Highland Grasslands) in the Brazilian Atlantic Forest, woody communities grow either clustered in tree islands or interspersed within the herbaceous matrix. The functional ecology, diversity and biotic processes shaping these communities are largely unstudied. We characterised the functional assembly and diversity of these tropical montane woody communities and investigated how those communities fit within the Grime’s CSR (C – competitor, S – stress-tolerant, R – ruderal) scheme, what trade-offs they exhibit and how traits and functional diversity vary in response to bamboo invasion. Methods: We sampled five leaf traits and wood density along transects covering the woody communities both inside tree islands and outside (i.e. woody plants in the grasslands community) to characterise the functional ecology of the community. We used Kruskal-Wallis test, t-test and variation partitioning to determine effects of inside vs outside the tree island and bamboo invasion on traits, woody species diversity and functional diversity. Results: We found a general SC/S strategy with drought-related functional trade-offs. Woody plants in tree islands had more acquisitive traits, whereas woody plants within the grasslands had more conservative traits. Trait variation was mostly taxonomically driven, and species composition varied between inside and outside tree islands. Leaf thickness, wood density and foliar water uptake were unrelated to CSR-strategies, suggesting independent trait dimensions and multiple drought-coping strategies within the predominant S-strategy. Bamboo-invaded islands showed lower Simpson diversity, lower functional dispersion, lower foliar water uptake and greater leaf thickness than non-invaded tree islands. Conclusions: The observed functional assembly in response to bamboo and facilitation have implications for future forest expansion and response of the communities to climate change. Further studies on eco-physiological and establishment traits and the mechanisms behind biotic interactions are needed to better understand the response of these communities to future environmental changes.


2007 ◽  
Vol 13 ◽  
pp. 135-138
Author(s):  
S. Rasmussen ◽  
A.J. Parsons ◽  
Q. Liu ◽  
H. Xue ◽  
J.A. Newman

Two controlled environment experiments were performed to test the effects of nitrogen, phosphorus and carbohydrates on endophyte (Neotyphodium lolii) and alkaloid concentrations in ryegrass (Lolium perenne). Three perennial ryegrass cultivars ('high sugar grasses' AberDove and AberDart; control Fennema) that differ in carbohydrate content were infected with three strains of N. lolii (common strain, CS; AR1; AR37). Infected and uninfected plants were grown under high (9 mM) and low (2.25 mM) nitrogen (AberDove, Fennema; CS, AR1, AR37) or under high (2 mM KH2PO4) and low (0.05 mM KH2PO4) phosphorus (AberDart, Fennema; CS, AR1). Quantitative realtime Polymerase Chain Reaction (qPCR) was used to estimate endophyte concentrations in harvested leaf tissues. High N and P supply as well as high carbohydrate content of the host grass reduced endophyte concentrations. Alkaloid production was also reduced under both increased N supply and in the high sugar cultivar, and was linearly related to endophyte concentration (except ergovaline). The results stress the need for wider quantification of fungal endophytes in the grassland/ foliar endophyte context, and have implications for how introducing new cultivars, novel endophytes, or increasing nutrient inputs, affect the role of endophytes in grassland ecosystems. Keywords: Neotyphodium lolii, foliar endophyte, Lolium perenne, perennial ryegrass, qPCR, high sugar ryegrass, nitrogen, phosphate, carbohydrate, AR1, AR37, alkaloids


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
A Triastuti ◽  
M Vansteelandt ◽  
F Barakat ◽  
P Jargeat ◽  
L Rieusset ◽  
...  

1989 ◽  
Vol 7 (2) ◽  
pp. 77-78
Author(s):  
Tom Ness
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document