Bark in Woody Plants: Understanding the Diversity of a Multifunctional Structure

2019 ◽  
Vol 59 (3) ◽  
pp. 535-547 ◽  
Author(s):  
Julieta A Rosell

Abstract Most biological structures carry out multiple functions. Focusing on only one function to make adaptive inferences overlooks that manifold selection pressures and tradeoffs shape the characteristics of a multifunctional structure. Focusing on single functions can only lead to a partial picture of the causes underlying diversity and the evolutionary origin of the structure in question. I illustrate this discussion using bark as a study case. Bark comprises all the tissues surrounding the xylem in woody plants. Broadly, bark includes an inner and mostly living region and an outer, dead one. Of all plant structures, bark has the most complex anatomical structure and ontogenetic origin involving two (and often three) different meristems. Traditionally, the wide diversity in bark traits, mainly bark thickness, has been interpreted as the result of the selective pressures imposed by fire regime. However, recent research has shown that explanations based on fire regime cannot account for salient patterns of bark variation globally including the very strong inner bark thickness–stem diameter scaling, which is likely due to metabolic needs, and the very high intracommunity variation in total, inner, and outer bark thickness, and in inner:outer proportions. Moreover, explanations based on fire disregard that in addition to fire protection, bark carries out several other crucial functions for plants including translocation of photosynthates; storage of starch, soluble sugars, water, and other compounds; protection from herbivores, pathogens, and high temperatures; wound closure, as well as mechanical support, photosynthesis, and likely being involved in xylem embolism repair. All these functions are crucial for plant performance and are involved in synergistic (e.g., storage of water and insulation) and trade-off relationships (e.g., protection from fire vs photosynthetic activity). Focusing on only one of these functions, protection from fire has provided an incomplete picture of the selective forces shaping bark diversity and has severely hindered our incipient understanding of the functional ecology of this crucial region of woody stems. Applying a multifunctional perspective to the study of bark will allow us to address why we observe such high intracommunity variation in bark traits, why some bark trait combinations are ontogenetically impossible or penalized by selection, how bark is coordinated functionally with other plant parts, and as a result, to understand how bark contributes to the vast diversity of plant ecological strategies across the globe.

2019 ◽  
Vol 106 (10) ◽  
pp. 1386-1391
Author(s):  
Xiaoxia Li ◽  
Sergio Rossi ◽  
Eryuan Liang
Keyword(s):  

1989 ◽  
Vol 16 (3) ◽  
pp. 265 ◽  
Author(s):  
TL Setter ◽  
H Greenway ◽  
T Kupkanchanakul

Submergence of rice in water at low CO2 concentrations was studied in phytotron experiments using plants in the 3rd to 4th leaf stage. Cultivars known to differ in tolerance to complete submergence were adversely affected by the same mechanisms but to a different degree. Submergence for 4-12 days either reduced dry weight production of the whole plant by 6 to 10 fold or even resulted in a loss of dry weight. Nevertheless, the emerging leaf elongated, and both ethanol insoluble material and protein content increased with time. These increases were associated with translocation of dry matter and nitrogen from expanded to expanding leaves. Submergence also reduced concentrations of soluble sugars and starch in all plant parts by 4 to 12 fold. In contrast, concentrations of potassium and free amino acids in shoots were either the same or, in the case of the emerging leaf, higher than in plants which were not submerged. These results indicate (i) these solutes were not limiting growth and (ii) the tissues retained their semipermeability to these solutes during submergence. Insufficient capacity of root metabolism in submerged plants was indicated by low rates of respiration, which persisted in the presence of glucose, and by a low ability to consume ethanol. A model is presented on the adverse effects of submergence of rice which considers possible interactions between CO2, low O2 and high ethylene concentrations.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11860
Author(s):  
Anum Zeb Abbasi ◽  
Misbah Bilal ◽  
Ghazal Khurshid ◽  
Charilaos Yiotis ◽  
Iftikhar Zeb ◽  
...  

Background Photosynthesis is a key process in plants that is compromised by the oxygenase activity of Rubisco, which leads to the production of toxic compound phosphoglycolate that is catabolized by photorespiratory pathway. Transformation of plants with photorespiratory bypasses have been shown to reduce photorespiration and enhance plant biomass. Interestingly, engineering of a single gene from such photorespiratory bypasses has also improved photosynthesis and plant productivity. Although single gene transformations may not completely reduce photorespiration, increases in plant biomass accumulation have still been observed indicating an alternative role in regulating different metabolic processes. Therefore, the current study was aimed at evaluating the underlying mechanism (s) associated with the effects of introducing a single cyanobacterial glycolate decarboxylation pathway gene on photosynthesis and plant performance. Methods Transgenic Arabidopsis thaliana plants (GD, HD, OX) expressing independently cyanobacterial decarboxylation pathway genes i.e., glycolate dehydrogenase, hydroxyacid dehydrogenase, and oxalate decarboxylase, respectively, were utilized. Photosynthetic, fluorescence related, and growth parameters were analyzed. Additionally, transcriptomic analysis of GD transgenic plants was also performed. Results The GD plants exhibited a significant increase (16%) in net photosynthesis rate while both HD and OX plants showed a non-significant (11%) increase as compared to wild type plants (WT). The stomatal conductance was significantly higher (24%) in GD and HD plants than the WT plants. The quantum efficiencies of photosystem II, carbon dioxide assimilation and the chlorophyll fluorescence-based photosynthetic electron transport rate were also higher than WT plants. The OX plants displayed significant reductions in the rate of photorespiration relative to gross photosynthesis and increase in the ratio of the photosynthetic electron flow attributable to carboxylation reactions over that attributable to oxygenation reactions. GD, HD and OX plants accumulated significantly higher biomass and seed weight. Soluble sugars were significantly increased in GD and HD plants, while the starch levels were higher in all transgenic plants. The transcriptomic analysis of GD plants revealed 650 up-regulated genes mainly related to photosynthesis, photorespiratory pathway, sucrose metabolism, chlorophyll biosynthesis and glutathione metabolism. Conclusion This study revealed the potential of introduced cyanobacterial pathway genes to enhance photosynthetic and growth-related parameters. The upregulation of genes related to different pathways provided evidence of the underlying mechanisms involved particularly in GD plants. However, transcriptomic profiling of HD and OX plants can further help to identify other potential mechanisms involved in improved plant productivity.


Author(s):  
Eric S. Kasischke ◽  
David L. Verbyla

Fire is ubiquitous throughout the global boreal forest (Wein 1983, Payette 1992, Goldammer and Furyaev 1996, Kasischke and Stocks 2000). The inter- and intra-annual patterns of fire in this biome depend on several interrelated factors, including the quantity and quality of fuel, fuel moisture, and sources of ignition. Fire cycles in different boreal forest types vary between 25 and >200 years (Heinselman 1981, Yarie 1981, Payette 1992, Conard and Ivanova 1998). Although the increased presence of humans in some regions of boreal forest has undoubtedly changed the fire regime (DeWilde 2003), natural fire is still a dominant factor in ecosystem processes throughout this biome. Boreal forest fires are similar to those of other forests in that they vary between surface and crown fires, depending on forest type and climatic factors. Surface fires kill and consume most of the understory vegetation, as well as portions of the litter or duff lying on the forest floor, resulting in varying degrees of mortality of canopy and subcanopy trees. Crown fires consume large amounts of the smaller plant parts (or fuels) present as leaves, needles, twigs, and small branches and kill all trees. These fires are important in initiating secondary succession (Lutz 1956, Heinselman 1981, Van Cleve and Viereck 1981, Van Cleve et al. 1986, Viereck 1983, Viereck et al. 1986). Unlike fires in other forest types, smoldering ground fires in the boreal forest can combust a significant fraction of the deep organic (fibric and humic) soils in forests overlying permafrost (Dyrness and Norum 1983, Landhauesser and Wein 1993, Kasischke et al. 2000a, Miyanishi and Johnson 2003). During periods of drought, when water tables are low, or prior to spring thaw, organic soils in peatlands can become dry enough to burn, as well (Zoltai et al. 1998, Turetsky and Wieder 2001, Turetsky et al. 2002).


2016 ◽  
Vol 43 (2) ◽  
pp. 87 ◽  
Author(s):  
Sergey Shabala ◽  
Rosemary G. White ◽  
Michael A. Djordjevic ◽  
Yong-Ling Ruan ◽  
Ulrike Mathesius

Plant adaptive potential is critically dependent upon efficient communication and co-ordination of resource allocation and signalling between above- and below-ground plant parts. Plant roots act as gatekeepers that sense and encode information about soil physical, chemical and biological factors, converting them into a sophisticated network of signals propagated both within the root itself, and also between the root and shoot, to optimise plant performance for a specific set of conditions. In return, plant roots receive and decode reciprocal information coming from the shoot. The communication modes are highly diverse and include a broad range of physical (electric and hydraulic signals, propagating Ca2+ and ROS waves), chemical (assimilates, hormones, peptides and nutrients), and molecular (proteins and RNA) signals. Further, different signalling systems operate at very different timescales. It remains unclear whether some of these signalling systems operate in a priming mode(s), whereas others deliver more specific information about the nature of the signal, or whether they carry the same ‘weight’. This review summarises the current knowledge of the above signalling mechanisms, and reveals their hierarchy, and highlights the importance of integration of these signalling components, to enable optimal plant functioning in a dynamic environment.


1970 ◽  
Vol 48 (7) ◽  
pp. 1351-1354 ◽  
Author(s):  
W. żelawski ◽  
F. P. Riech ◽  
R. G. Stanley

This study was undertaken to determine whether tree stems can reassimilate internal CO2 produced by respiration or whether this CO2 is evolved and could possibly interfere with measurements of leaf gas exchange. Radioactive CO2 was added to the stem transpiration stream of slash pine seedlings (Pinus elliottii Engelm.) and the distribution of 14C studied in shoots and needles exposed to dark and light conditions.Photosynthesis decreases the amount of internal CO2 evolved. Large amounts of 14CO2 from the transpiration stream are incorporated into organic compounds of needles and stems, primarily into ethanol-soluble sugars and organic acids, and in time, small amounts of 14C occur in the ethanol-insoluble materials.These results indicate that respiratory CO2 transported in the transpiration stream of woody plants can be reused in photosynthesis or possibly other metabolic processes. Internal CO2 is also evolved to the atmosphere in large amounts, but related research indicates it diffuses primarily out of the stem tissue not the needles. The evolved CO2 supplied from stems does not significantly affect short term measurements of needle gas exchange in pine seedlings.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 473d-473
Author(s):  
Remmie Booij ◽  
Bert Meurs

The harvest season for Brussels sprouts runs mainly from September to March. During this period the daylength is relatively short and the light intensity is low. Bud growth occurs, when photosynthesis is low. The question is, whether actual photosynthetic rate or rcdistrubution of earlier fixed photosynthates is the main source for bud growth. The aim of the present experiment was first to determine the gain of C and N and the distribution of these plant constituents within the plant, and second the role of the apical bud. Partitioning of dry matter over the plant parts and the allocation along the stem were determined. Contents of C, N, NO3 and soluble sugars in the dry matter were ascertained, and the total amounts of these components could be determined. From this analysis fluxes were calculated and the role of redistribution was investigated. Redistribution of soluble sugars and N from leaves before shedding contributed substantially to bud growth. The apical bud did not affect total dry matter production, but if removed, more dry matter became available for bud growth in the top region of the plant, resulting in a higher total bud yield.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 748
Author(s):  
Mostafa M. Rady ◽  
Sara H. K. Boriek ◽  
Taia A. Abd El-Mageed ◽  
Mohamed A. Seif El-Yazal ◽  
Esmat F. Ali ◽  
...  

The use of growth regulators such as gibberellic acid (GA3) and biostimulants, including diluted bee honey (Db-H) can improve drought tolerance in many crops, including the faba bean (Vicia faba L.). Db-H contains high values of osmoprotectants, mineral nutrients, vitamins, and many antioxidants making it an effective growth regulator against environmental stress effects. Therefore, the present study was planned to investigate the potential improvement in the faba bean plant performance (growth and productivity) under full watering (100% of crop evapotranspiration (ETc)) and drought stress (60% of ETc) by foliar application of GA3 (20 mg L−1) or Db-H (20 g L−1). The ameliorative impacts of these growth regulators on growth, productivity, physio-biochemical attributes, nutrient status, antioxidant defense system, and phytohormones were evaluated. GA3 or Db-H attenuated the negative influences of drought stress on cell membrane stability, ion leakage, relative water content, nutrient status, leaf pigments related to photosynthesis (chlorophylls and carotenoids), and efficiency of the photosystem II (PSII in terms of Fv/Fm and performance index), thus improving faba bean growth, green pod yield, and water use efficiency. Drought stress caused an abnormal state of nutrients and photosynthetic machinery due to increased indicators of oxidative stress (malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide (O2•−)), associated with increased osmoprotectants (proline, glycine betaine, soluble sugars, and soluble protein), non-enzymatic antioxidants (ascorbic acid, glutathione, and α-tocopherol), and enzymatic antioxidant activities (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase). However, foliar-applied GA3 or Db-H mediated further increases in osmoprotectants, antioxidant capacity, GA3, indole-3-acetic acid, and cytokinins, along with decreased levels of MDA and abscisic acid. These results suggest the use of GA3 or Db-H at the tested concentrations to mitigate drought-induced damage in bean plants to obtain satisfactory growth and productivity under a water deficit of up to 40%.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 93
Author(s):  
Colin St. James ◽  
Azim U. Mallik

In eastern Canada, alternation of wildfire regime due to fire suppression creates alternate vegetation states converting black spruce forest to heath and shrub savannah (SS). We compared the taxonomic diversity (TD) and functional diversity (FD) of post-fire forest, heath, and SS alternate states to determine if community FD can explain their persistence. We hypothesized that (i) species diversity (TD and FD) would be the highest in forest followed by SS and heath due to decreased interspecific competition and niche differentiation, (ii) differences between TD and FD indices would be greater in communities with high TD in forest due to high trait differentiation and richness, and (iii) changes in community trait values would indicate niche limitations and resource availability. We conducted this study in Terra Nova National Park, Newfoundland, Canada. We calculated functional dispersion (alpha FD), functional pairwise dissimilarity (beta FD), Shannon’s diversity (alpha TD), and Bray–Curtis dissimilarity (beta TD) from species cover. We used five functional traits (specific root length, specific leaf area, leaf dry matter content, height, and seed mass) related to nutrient acquisition, productivity, and growth. We found lower beta diversity in forest than heath and SS; forest also had higher species diversity and greater breadth in niche space utilization. SS was functionally similar to heath but lower than forest in functional dispersion and functional divergence. It had the highest functional richness and evenness. There was no difference in functional evenness between forest and heath. Functional beta diversity was the highest in forest, and did not differ between heath and SS. Resource acquisition and availability was the greatest in forest and the lowest in heath. We suspect that this might be due to forest having the highest functional trait turnover and niche utilization. We conclude that alternate vegetation states originating from alterations to the natural fire regime negatively impact ecosystem function.


Sign in / Sign up

Export Citation Format

Share Document