scholarly journals Integrating plant-plant competition for nitrogen into a 3D individual-based model simulating the effects of cropping systems on weed dynamics

2021 ◽  
Vol 268 ◽  
pp. 108166
Author(s):  
Delphine Moreau ◽  
Olivia Pointurier ◽  
Laurène Perthame ◽  
Nicolas Beaudoin ◽  
Jean Villerd ◽  
...  
2012 ◽  
Vol 151 (2) ◽  
pp. 229-245 ◽  
Author(s):  
N. COLBACH ◽  
D. MÉZIÈRE

SUMMARYEnvironmental problems mean that herbicide applications must be drastically reduced and optimized. Models that quantify the effects of crop management techniques on weed dynamics are valuable tools for designing weed management strategies. Indeed, the techniques to be optimized are numerous and diverse, and their effects vary considerably with environmental conditions and the state of the weed flora. In the present study, a mechanistic weed dynamics model,AlomySys, was used to carry outin silicoexperiments in order to: (1) rank crop management components according to the resulting decrease in weed infestation, and (2) study the sensitivity of the major component effects to biophysical field state variables in order to identify indicators and thresholds that could serve for future decision-rules for farmers. The various results were compiled into rules for optimizing timing and other options (tillage tools, herbicide types) for the different crop management techniques. The rules were based on a series of biophysical field state variables, i.e. cumulated rainfall, thermal time, soil moisture and weed densities prior to the operation, in the previous and pre-previous crops. For instance, the first tillage should be delayed until the cumulated rainfall since harvest exceeds 50 mm and be carried out in moist conditions. Mouldboard ploughing is advised if the infestation of the previous crop exceeds 20 weeds/m2and particularly if this exceeds 0·3 times that of the pre-previous crop. Ploughing should occur when the cumulated rainfall since harvest reaches 100–200 mm. The effects of crop succession and long-term effects of management techniques have been studied in a companion paper (Colbachet al. 2012).


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
S. Hortal ◽  
Y. M. Lozano ◽  
F. Bastida ◽  
C. Armas ◽  
J. L. Moreno ◽  
...  

Ecology ◽  
2012 ◽  
Author(s):  
Christopher J. Lortie

Species interactions are a cornerstone of ecological research wherein the effects of an individual of one species on another individual, frequently a different species, are studied. Within versus between species interactions are also commonly contrasted as a means to infer relative importance, but the majority of theory advances, at least at the community level, are associated with interactions between individuals of different species. Interactions can range from positive to negative, and effects are measured at all levels of development, or life history stages, of an organism. Positive interactions have been extensively studied in both population and community ecology. Facilitation, however, is a relatively specific term that has evolved primarily to describe positive plant–plant interactions (see Defining Facilitation). Facilitation, or positive interactions, is a relatively recent subset of these species interactions in general, including related processes, such as competition, mutualism, and parasitism. Facilitation is best viewed as the antithesis of the plant competition literature, as it shares many of the main attributes, both in terms of scope and approach, and arose as a comparator to this research. Facilitation studies mainly refer to positive plant–plant interactions, as the term was proposed in the plant literature and extensively used to describe interactions that include a positive effect of one species on another. Mutualism and parasitism research is often plant–insect based and formally identifies the reciprocal effect in the interaction, that is, (+, +) in mutualism and (+,−) in parasitism, whereas facilitation studies are generally (+,0) or (+,?), with the second effect often unreported. Interactions that include at least one negative interaction are usually described as competition in the plant literature and do not apply the term facilitation (although the frequency of both being discussed concomitantly is increasing). Hence, the term facilitation, owing to historical use, describes the subset of interactions that are (+,0) and is mostly specific to within plants, although its usage is expanding. The research on facilitation has most likely peaked, similar to plant competition studies, in that facilitation has been clearly established as an important process in the formation of plant communities. Additional studies simply demonstrating facilitation are increasing unlikely to be present in the literature. That said, the implications to theory and other, more nuanced aspects of interaction, such as context dependence, shifting balances, and importance of the environment, as they relate to facilitation, are still largely unexplored. In the early 21st century the most contentious debates, with respect to facilitation, center on either disagreement concerning what a community is and whether research should be conducted at this scale or on how to use environmental gradients (i.e., stress) most effectively. Both of these topics are described herein, with readings also included on Historical Background, Experimental and Analytical Approaches, Evolution, other taxa, and Applications.


2002 ◽  
Vol 94 (2) ◽  
pp. 174 ◽  
Author(s):  
Doug A. Derksen ◽  
Randy L. Anderson ◽  
Robert E. Blackshaw ◽  
Bruce Maxwell

2016 ◽  
Vol 196 ◽  
pp. 357-367 ◽  
Author(s):  
Dilshan Benaragama ◽  
Steven J. Shirtliffe ◽  
Bruce D. Gossen ◽  
Stu A. Brandt ◽  
Reynold Lemke ◽  
...  

Author(s):  
Amit Kumar ◽  
Richard van Duijnen ◽  
Benjamin M. Delory ◽  
Rüdiger Reichel ◽  
Nicolas Brüggemann ◽  
...  

AbstractBackground and AimsPlants respond to various environmental stimuli, and root systems are highly responsive to the availability and distribution of nutrients in the soil. Root system responses to the limitation of either nitrogen (N) or phosphorus (P) are well documented, but how the early root system responds to (co-) limitation of one (N or P) or both (N and P) in a stoichiometric framework is not well known despite its relevance in agriculture. In addition, how plant-plant competition (here intra-specific) alters plant responses to N:P stoichiometry is understudied. Therefore, we aimed to investigate the effects of N:P stoichiometry and competition on root system responses and overall plant performance.MethodsPlants (Hordeum vulgare L.) were grown in rhizoboxes for 24 days in the presence or absence of competition (three vs. one plant per rhizobox), and fertilized with different combinations of N:P (low N+low P, low N+high P, high N+low P, and high N+high P).Key ResultsShoot biomass was highest when both N and P were provided in high amounts. In competition, shoot biomass decreased on average by 22%. Interestingly, N:P stoichiometry and competition had no clear effect on root biomass. However, we found distinct root responses in relation to biomass allocation across depths. Specific root length depended on the identity of limiting nutrient (N or P) and presence/absence of competition. Plants rooted deeper when N was the most limiting compared to shallower rooting when P was the most limiting nutrient.ConclusionsOverall, our study sheds light on the early plant responses to plant-plant competition and stoichiometric availability of two macronutrients most limiting plant performance. With low N and P availability during early growth, higher investments in root system development can significantly trade off with aboveground productivity, and strong intra-specific competition can further strengthen such effects.


Sign in / Sign up

Export Citation Format

Share Document