Facilitation and the Organization of Communities

Ecology ◽  
2012 ◽  
Author(s):  
Christopher J. Lortie

Species interactions are a cornerstone of ecological research wherein the effects of an individual of one species on another individual, frequently a different species, are studied. Within versus between species interactions are also commonly contrasted as a means to infer relative importance, but the majority of theory advances, at least at the community level, are associated with interactions between individuals of different species. Interactions can range from positive to negative, and effects are measured at all levels of development, or life history stages, of an organism. Positive interactions have been extensively studied in both population and community ecology. Facilitation, however, is a relatively specific term that has evolved primarily to describe positive plant–plant interactions (see Defining Facilitation). Facilitation, or positive interactions, is a relatively recent subset of these species interactions in general, including related processes, such as competition, mutualism, and parasitism. Facilitation is best viewed as the antithesis of the plant competition literature, as it shares many of the main attributes, both in terms of scope and approach, and arose as a comparator to this research. Facilitation studies mainly refer to positive plant–plant interactions, as the term was proposed in the plant literature and extensively used to describe interactions that include a positive effect of one species on another. Mutualism and parasitism research is often plant–insect based and formally identifies the reciprocal effect in the interaction, that is, (+, +) in mutualism and (+,−) in parasitism, whereas facilitation studies are generally (+,0) or (+,?), with the second effect often unreported. Interactions that include at least one negative interaction are usually described as competition in the plant literature and do not apply the term facilitation (although the frequency of both being discussed concomitantly is increasing). Hence, the term facilitation, owing to historical use, describes the subset of interactions that are (+,0) and is mostly specific to within plants, although its usage is expanding. The research on facilitation has most likely peaked, similar to plant competition studies, in that facilitation has been clearly established as an important process in the formation of plant communities. Additional studies simply demonstrating facilitation are increasing unlikely to be present in the literature. That said, the implications to theory and other, more nuanced aspects of interaction, such as context dependence, shifting balances, and importance of the environment, as they relate to facilitation, are still largely unexplored. In the early 21st century the most contentious debates, with respect to facilitation, center on either disagreement concerning what a community is and whether research should be conducted at this scale or on how to use environmental gradients (i.e., stress) most effectively. Both of these topics are described herein, with readings also included on Historical Background, Experimental and Analytical Approaches, Evolution, other taxa, and Applications.

2015 ◽  
Author(s):  
Anna M. O’Brien ◽  
Ruairidh J.H. Sawers ◽  
Jeffrey Ross-Ibarra ◽  
Sharon Y. Strauss

AbstractThe outcomes of many species interactions are conditional on the environments in which they occur. A common pattern is that outcomes grade from being more positive under stressful conditions to more antagonistic or neutral under benign conditions. The evolutionary implications of conditionality in interactions have received much less attention than the documentation of conditionality itself, with a few notable exceptions. Here, we predict patterns of adaptation and co-adaptation between partners along abiotic gradients, positing that when interactions become more positive in stressful environments, fitness outcomes for mutations affecting interactions align across partners and selection should favor greater mutualistic adap-tation and co-adaptation between interacting species. As a corollary, in benign environments, if interactions are strongly antagonistic, we predict antagonistic co-adaptation resulting in Red Queen or arms-race dynamics, or reduction of antagonism through character displacement and niche partitioning. We predict no adaptation if interactions are more neutral. We call this the CoCoA hypothesis: (Co)-adaptation and Conditionality across Abiotic gradients. We describe experimental designs and statistical models that allow testing predictions of CoCoA, with a focus on positive interactions. While only one study has included all the elements to test CoCoA, we briefly review the literature and summarize study findings relevant to CoCoA and highlight opportunities to test CoCoA further.


2016 ◽  
Vol 12 (1) ◽  
pp. 20150853 ◽  
Author(s):  
Bodil K. Ehlers ◽  
Christian F. Damgaard ◽  
Fabien Laroche

Many studies report that intraspecific genetic variation in plants can affect community composition and coexistence. However, less is known about which traits are responsible and the mechanisms by which variation in these traits affect the associated community. Focusing on plant–plant interactions, we review empirical studies exemplifying how intraspecific genetic variation in functional traits impacts plant coexistence. Intraspecific variation in chemical and architectural traits promotes species coexistence, by both increasing habitat heterogeneity and altering competitive hierarchies. Decomposing species interactions into interactions between genotypes shows that genotype × genotype interactions are often intransitive. The outcome of plant–plant interactions varies with local adaptation to the environment and with dominant neighbour genotypes, and some plants can recognize the genetic identity of neighbour plants if they have a common history of coexistence. Taken together, this reveals a very dynamic nature of coexistence. We outline how more traits mediating plant–plant interactions may be identified, and how future studies could use population genetic surveys of genotype distribution in nature and methods from trait-based ecology to better quantify the impact of intraspecific genetic variation on plant coexistence.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marc Peipoch ◽  
Scott R. Miller ◽  
Tiago R. Antao ◽  
H. Maurice Valett

Abstract Riverine floodplains exhibit high floral and faunal diversity as a consequence of their biophysical complexity. Extension of such niche partitioning processes to microbial communities is far less resolved or supported. Here, we evaluated the responses of aquatic biofilms diversity to environmental gradients across ten riverine floodplains with differing degrees of flow alteration and habitat diversity to assess whether complex floodplains support biofilm communities with greater biodiversity and species interactions. No significant evidence was found to support a central role for habitat diversity in promoting microbial diversity across 116 samples derived from 62 aquatic habitats, as neither α (H’: 2.8–4.1) nor β (Sørensen: 0.3–0.39) diversity were positively related to floodplain complexity across the ten floodplains. In contrast, our results documented the sensitivity of biofilm communities to regional templates manifested as gradients of carbon, nitrogen, and phosphorous availability. Large-scale conditions reflecting nitrogen limitation increased the relative abundance of N-fixing cyanobacteria (up to 0.34 as fraction of total reads), constrained the total number of interactions among bacterial taxa, and reinforced negative over positive interactions, generating unique microbial communities and networks that reflect large-scale species sorting in response to regional geochemical gradients.


2021 ◽  
Vol 13 (9) ◽  
pp. 4695
Author(s):  
Mohamed Lazali ◽  
Simon Boudsocq ◽  
Elisa Taschen ◽  
Mohamed Farissi ◽  
Wissem Hamdi ◽  
...  

Modern intensive agricultural systems generally focus on the productivity of monocultures. They are characterized by a low diversity of crops, with uniform and symmetrical planting layouts. They largely rely on the utilization of chemical inputs. They are widely denounced for their negative environmental impacts. In this context, the ecological intensification framework proposes the exploitation of biodiversity in order to better achieve such ecosystem services and soil conservation. Intercropping, i.e., the simultaneous growth of two or more crops mixed in the same field, appears to have the potentialities to improve the productivity, resilience capacity, and ecological sustainability of agroecosystems through the intensification of such positive interactions between plants as facilitation and niche complementarity. Cereal–legume intercropping turns out to be effective in low-N agroecosystems, since legumes have the ability to fix atmospheric nitrogen via their symbiosis with rhizobia. This fixed N, in turn, benefits the cereal through various ecological processes. The objective of the project is to improve the benefit of legumes for intercropped cereals in low-input agroecosystems through the management of plant–plant and plant–microbe interactions. The nitrogen-fixing symbiosis requires phosphorus and iron to be efficient. While these nutrients are prone to be lacking in N-limited agroecosystems, as is the case in Mediterranean agroecosystems, plant–plant interactions and rhizobacteria and mycorrhiza interactions seem to play an important role in their acquisition and efficient utilization. We propose the development of a participatory research project in four Mediterranean agroecosystems. Agronomic and environmental diagnosis will be performed in the field to assess N and P biogeochemical cycles, as well as Fe availability, in combination with the plant performances and the diversity of soil microorganisms. Molecular identification of soil microorganisms from the most productive sites will be done and research of genes for tolerance to Fe- and P-deficiencies will be realized. Glasshouse experiments involving various cultivars of cereals and legumes, as well as the previously identified microorganisms, will be done in order to disentangle the various mechanisms of nutrient acquisition, sharing, and transfer between plants. Other experiments will assess the effects of cereal–legume–microbe interactions on the development and architecture of the plant root systems and root hair development. The lines of research are integrated with a strategy of functional ecology on plant–microbe–soil interactions in the agroecosystems of Gabès (Tunisia), Boumedfaa (Algeria), Beni Mellal (Morocco), and Thessaloniki (Greece). Using multidisciplinary and innovative approaches, the program will provide novel knowledge and understanding of agroecosystem management for food production.


2011 ◽  
Vol 7 (5) ◽  
pp. 699-701 ◽  
Author(s):  
Emmanuel Defossez ◽  
Benoît Courbaud ◽  
Benoît Marcais ◽  
Wilfried Thuiller ◽  
Elena Granda ◽  
...  

Theoretical models predict weakening of negative biotic interactions and strengthening of positive interactions with increasing abiotic stress. However, most empirical tests have been restricted to plant–plant interactions. No empirical study has examined theoretical predictions of interactions between plants and below-ground micro-organisms, although soil biota strongly regulates plant community composition and dynamics. We examined variability in soil biota effects on tree regeneration across an abiotic gradient. Our candidate tree species was European beech ( Fagus sylvatica L.), whose regeneration is extremely responsive to soil biota activity. In a greenhouse experiment, we measured tree survival in sterilized and non-sterilized soils collected across an elevation gradient in the French Alps. Negative effects of soil biota on tree survival decreased with elevation, similar to shifts observed in plant–plant interactions. Hence, soil biota effects must be included in theoretical models of plant biotic interactions to accurately represent and predict the effects of abiotic gradient on plant communities.


Author(s):  
Jitendra Rajpoot

International Allelopathy Society has redefined Allelopathy as any process involving secondary metabolities produced by plants, algae, bacteria, fungi and viruses that influences the growth and development of agricultural and biological system; a study of the functions of secondary metabolities, their significance in biological organization, their evolutionary origin and elucidation of the mechanisms involving plant-plant, plant-microorganisms, plant-virus, plant-insect, plant-soil-plant interactions.


Alpine Botany ◽  
2021 ◽  
Author(s):  
Vera Margreiter ◽  
Janette Walde ◽  
Brigitta Erschbamer

AbstractSeed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document