scholarly journals Dynamics in bacterial surface properties of a natural bacterial community in the coastal North Sea during a spring phytoplankton bloom

2005 ◽  
Vol 53 (2) ◽  
pp. 285-294 ◽  
Author(s):  
Karen Elisabeth Stoderegger ◽  
Gerhard J. Herndl
2020 ◽  
Author(s):  
Greta Reintjes ◽  
Bernhard M. Fuchs ◽  
Mirco Scharfe ◽  
Karen H. Wiltshire ◽  
Rudolf Amann ◽  
...  

SummarySpring phytoplankton blooms in temperate environments contribute disproportionately to global marine productivity. Bloom-derived organic matter, much of it occurring as polysaccharides, fuels biogeochemical cycles driven by interacting autotrophic and heterotrophic communities. We tracked changes in the mode of polysaccharide utilization by heterotrophic bacteria during the course of a diatom-dominated bloom in the German Bight, North Sea. Polysaccharides can be taken up in a ‘selfish’ mode, where initial hydrolysis is coupled to transport into the periplasm, such that little to no low molecular weight (LMW) products are externally released to the environment. Alternatively, polysaccharides hydrolyzed by cell-surface attached or free extracellular enzymes (external hydrolysis) yield LMW products available to the wider bacterioplankton community. In the early bloom phase, selfish activity was accompanied by low extracellular hydrolysis rates of a few polysaccharides. As the bloom progressed, selfish uptake increased markedly, and external hydrolysis rates increased, but only for a limited range of substrates. The late bloom phase was characterized by high external hydrolysis rates of a broad range of polysaccharides, and reduced selfish uptake of polysaccharides, except for laminarin. Substrate utilization mode is related both to substrate structural complexity and to the bloom-stage dependent composition of the heterotrophic bacterial community.Originality statementThe means by which heterotrophic bacteria cooperate and compete to obtain substrates is a key factor determining the rate and location at which organic matter is cycled in the ocean. Much of this organic matter is high molecular weight (HMW), and must be enzymatically hydrolyzed to smaller pieces to be processed by bacterial communities. Some of these enzyme-producing bacteria are ‘selfish’, processing HMW organic matter without releasing low molecular weight (LMW) products to the environment. Other bacteria hydrolyze HMW substrates in a manner that releases LMW products to the wider bacterial community. How these mechanisms of substrate hydrolysis work against a changing background of organic matter supply is unclear. Here, we measured changing rates and mechanisms of substrate processing during the course of a natural phytoplankton bloom in the North Sea. Selfish bacteria generally dominate in the initial bloom stages, but a greater supply of increasingly complex substrates in later bloom stages leads to external hydrolysis of a wider range of substrates, increasing the supply of LMW hydrolysis products to the wider bacterial community.


2016 ◽  
Vol 13 (19) ◽  
pp. 5527-5539 ◽  
Author(s):  
Sandra Mariam Heinzelmann ◽  
Nicole Jane Bale ◽  
Laura Villanueva ◽  
Danielle Sinke-Schoen ◽  
Catharina Johanna Maria Philippart ◽  
...  

Abstract. Culture studies of microorganisms have shown that the hydrogen isotopic composition of fatty acids depends on their metabolism, but there are only few environmental studies available to confirm this observation. Here we studied the seasonal variability of the deuterium-to-hydrogen (D / H) ratio of fatty acids in the coastal Dutch North Sea and compared this with the diversity of the phyto- and bacterioplankton. Over the year, the stable hydrogen isotopic fractionation factor ε between fatty acids and water (εlipid/water) ranged between −172 and −237 ‰, the algal-derived polyunsaturated fatty acid nC20:5 generally being the most D-depleted (−177 to −235 ‰) and nC18:0 the least D-depleted fatty acid (−172 to −210 ‰). The in general highly D-depleted nC20:5 is in agreement with culture studies, which indicates that photoautotrophic microorganisms produce fatty acids which are significantly depleted in D relative to water. The εlipid/water of all fatty acids showed a transient shift towards increased fractionation during the spring phytoplankton bloom, indicated by increasing chlorophyll a concentrations and relative abundance of the nC20:5 polyunsaturated fatty acids, suggesting increased contributions of photoautotrophy. Time periods with decreased fractionation (less negative εlipid/water values) can potentially be explained by an increased contribution of heterotrophy to the fatty acid pool. Our results show that the hydrogen isotopic composition of fatty acids is a promising tool to assess the community metabolism of coastal plankton potentially in combination with the isotopic analysis of more specific biomarker lipids.


Gene ◽  
2016 ◽  
Vol 576 (2) ◽  
pp. 610-617 ◽  
Author(s):  
Tomoko Sakami ◽  
Tsuyoshi Watanabe ◽  
Shigeho Kakehi ◽  
Yukiko Taniuchi ◽  
Akira Kuwata

2004 ◽  
Vol 52 (4) ◽  
pp. 281-292 ◽  
Author(s):  
Jan Vanaverbeke ◽  
Maaike Steyaert ◽  
Karline Soetaert ◽  
Véronique Rousseau ◽  
Dirk Van Gansbeke ◽  
...  

2013 ◽  
Vol 87 (2) ◽  
pp. 378-389 ◽  
Author(s):  
Bernd Wemheuer ◽  
Simon Güllert ◽  
Sara Billerbeck ◽  
Helge-Ansgar Giebel ◽  
Sonja Voget ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document