The use of time-lapse microscopy to investigate the impact of an oxygen gradient on embryo development

2009 ◽  
Vol 92 (3) ◽  
pp. S24-S25
Author(s):  
P.L. Wale ◽  
D.K. Gardner
1998 ◽  
Vol 28 (5) ◽  
pp. 883-892 ◽  
Author(s):  
Chris D. Webb ◽  
Peter L. Graumann ◽  
Jason A. Kahana ◽  
Aurelio A. Teleman ◽  
Pamela A. Silver ◽  
...  

2020 ◽  
Vol 114 (3) ◽  
pp. e44
Author(s):  
Alice J. Shapiro ◽  
Lindsay Kroener ◽  
Nicholas J. Jackson ◽  
Zachary Haimowitz ◽  
Alin Lina Akopians ◽  
...  

2014 ◽  
Vol 101 (6) ◽  
pp. 1637-1648.e5 ◽  
Author(s):  
Kelly Athayde Wirka ◽  
Alice A. Chen ◽  
Joe Conaghan ◽  
Kristen Ivani ◽  
Marina Gvakharia ◽  
...  

2014 ◽  
Vol 102 (3) ◽  
pp. e312
Author(s):  
T. Lundberg ◽  
F. Hambiliki ◽  
F. Sondèn ◽  
E. Akerlund ◽  
M. Bungum

2008 ◽  
Vol 74 (21) ◽  
pp. 6774-6781 ◽  
Author(s):  
Vinod Jyothikumar ◽  
Emma J. Tilley ◽  
Rashmi Wali ◽  
Paul R. Herron

ABSTRACT Bacteria from the genus Streptomyces are among the most complex of all prokaryotes; not only do they grow as a complex mycelium, they also differentiate to form aerial hyphae before developing further to form spore chains. This developmental heterogeneity of streptomycete microcolonies makes studying the dynamic processes that contribute to growth and development a challenging procedure. As a result, in order to study the mechanisms that underpin streptomycete growth, we have developed a system for studying hyphal extension, protein trafficking, and sporulation by time-lapse microscopy. Through the use of time-lapse microscopy we have demonstrated that Streptomyces coelicolor germ tubes undergo a temporary arrest in their growth when in close proximity to sibling extension sites. Following germination, in this system, hyphae extended at a rate of ∼20 μm h−1, which was not significantly different from the rate at which the apical ring of the cytokinetic protein FtsZ progressed along extending hyphae through a spiraling movement. Although we were able to generate movies for streptomycete sporulation, we were unable to do so for either the erection of aerial hyphae or the early stages of sporulation. Despite this, it was possible to demonstrate an arrest of aerial hyphal development that we suggest is through the depolymerization of FtsZ-enhanced green fluorescent protein (GFP). Consequently, the imaging system reported here provides a system that allows the dynamic movement of GFP-tagged proteins involved in growth and development of S. coelicolor to be tracked and their role in cytokinesis to be characterized during the streptomycete life cycle.


2021 ◽  
Author(s):  
Linnea J. Ritchie ◽  
Erin R. Curtis ◽  
Kimberly A. Murphy ◽  
Roy D. Welch

Myxococcus xanthus is a bacterium that lives on surfaces as a predatory biofilm called a swarm. As a growing swarm feeds on prey and expands, it displays dynamic multicellular patterns such as traveling waves called ripples and branching protrusions called flares. The rate at which a swarm expands across a surface, and the emergence of the coexisting patterns, are all controlled through coordinated cell movement. M. xanthus cells move using two motility systems known as Adventurous (A) and Social (S). Both are involved in swarm expansion and pattern formation. In this study, we describe a set of M. xanthus swarming genotype-to-phenotype associations that include both genetic and environmental perturbations. We identified new features of the swarming phenotype; recorded and measured swarm expansion using time-lapse microscopy; and compared the impact of mutations on different surfaces. These observations and analyses have increased our ability to discriminate between swarming phenotypes and provided context that allow us to identify some phenotypes as improbable ‘outliers’ within the M. xanthus swarming phenome. IMPORTANCE Myxococcus xanthus grows on surfaces as a predatory biofilm called a swarm. In nature, a feeding swarm expands by moving over and consuming prey bacteria. In the laboratory, a swarm is created by spotting cell suspension onto nutrient agar in lieu of prey. The suspended cells quickly settle on the surface as the liquid is absorbed into the agar, and the new swarm then expands radially. An assay that measures the expansion rate of a swarm of mutant cells is the first, and sometimes only, measurement used to decide whether a particular mutation impacts swarm motility. We have broadened the scope of this assay by increasing the accuracy of measurements and introducing prey, resulting in new identifiable and quantifiable features that can be used to improve genotype-to-phenotype associations.


Sign in / Sign up

Export Citation Format

Share Document