scholarly journals NOVEL SPERM CAPACITATION SYSTEM BASED ON MICROFLUIDICS, THE PATH TO AUTOMATION

2021 ◽  
Vol 116 (3) ◽  
pp. e334-e335
Author(s):  
Fernando Meseguer ◽  
Rocio Rivera-Egea ◽  
Lorena Bori ◽  
María de los Ángeles Valera ◽  
Lucia Alegre ◽  
...  
Keyword(s):  
2020 ◽  
Vol 220 ◽  
pp. 106394
Author(s):  
Silvia Gimeno-Martos ◽  
Marc Yeste ◽  
José Álvaro Cebrián-Perez ◽  
Teresa Muiño-Blanco ◽  
Rosaura Pérez-Pe ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rasoul Kowsar ◽  
Shahrzad Ronasi ◽  
Nima Sadeghi ◽  
Khaled Sadeghi ◽  
Akio Miyamoto

AbstractUpon insemination, sperm cells are exposed to components of the female reproductive tract (FRT) fluids, such as urea and epidermal growth factor (EGF). It has been shown that both urea and EGF use EGF receptor signaling and produce reactive oxygen species (ROS) that are required at certain levels for sperm capacitation and acrosome reaction. We therefore hypothesized that during bovine sperm capacitation, a high level of urea and EGF could interfere with sperm function through overproduction of ROS. High-level urea (40 mg/dl urea is equal to 18.8 mg/dl of blood urea nitrogen) significantly increased ROS production and TUNEL-positive sperm (sperm DNA fragmentation, sDF) percentage, but decreased HOS test score, progressive motility, acrosome reaction and capacitation. The EGF reversed the negative effects of urea on all sperm parameters, with the exception of ROS production and DNA fragmentation, which were higher in urea-EGF-incubated sperm than in control-sperm. The developmental competence of oocytes inseminated with urea-EGF-incubated sperm was significantly reduced compared to the control. A close association of ROS production or sDF with 0-pronuclear and sperm non-capacitation rates was found in the network analysis. In conclusion, EGF enhanced urea-reduced sperm motility; however, it failed to reduce urea-increased sperm ROS or sDF levels and to enhance subsequent oocyte competence. The data suggests that any study to improve sperm quality should be followed by a follow-up assessment of the fertilization outcome.


2004 ◽  
Vol 80 (1-2) ◽  
pp. 131-146 ◽  
Author(s):  
P Tienthai ◽  
A Johannisson ◽  
H Rodriguez-Martinez
Keyword(s):  

2012 ◽  
Vol 1 (1) ◽  
pp. 18
Author(s):  
Amrit Kaur Bansal ◽  
Ranjna Sundhey Cheema ◽  
Vinod Kumar Gandotra

The aim of this paper was to investigate the antioxidant effect of Mn2+ (200 mM) on the sperm capacitation and acrosome reaction of fresh and chilled cattle bull semen. It has been found that Mn2+ supplementation improves (P≤0.05) the motility at 0, 2, 4 and 6 h of incubation. MDA (malondialdehyde), end product of lipid peroxidation, decreases significantly (P≤0.05) with the supplementation of manganese at 0- and 6-hr of incubation both in fresh and chilled semen. Manganese also increases acrosome reaction significantly (P≤0.05) both in fresh and chilled semen at 0, 4 and 6 h of incubation. Therefore, our findings suggest the role of Mn2+supplementation in improving the quality of cattle bull semen by its scavenging property<em> i.e.</em> reduction in the production of reactive oxygen species during its storage at 4°C or incubation at 37°C for capacitation.


2019 ◽  
Vol 126 ◽  
pp. 191-198 ◽  
Author(s):  
Mrudhula Sajeevadathan ◽  
Murray J. Pettitt ◽  
Mary Buhr

Reproduction ◽  
2016 ◽  
Vol 152 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Naoya Araki ◽  
Natsuko Kawano ◽  
Woojin Kang ◽  
Kenji Miyado ◽  
Kaoru Yoshida ◽  
...  

Mammalian spermatozoa acquire their fertilizing ability in the female reproductive tract (sperm capacitation). On the other hand, seminal vesicle secretion, which is a major component of seminal plasma, inhibits the initiation of sperm capacitation (capacitation inhibition) and reduces the fertility of the capacitated spermatozoa (decapacitation). There are seven major proteins involved in murine seminal vesicle secretion (SVS1-7), and we have previously shown that SVS2 acts as both a capacitation inhibitor and a decapacitation factor, and is indispensable forin vivofertilization. However, the effects of SVSs other than SVS2 on the sperm have not been elucidated. Since mouseSvs2–Svs6genes evolved by gene duplication belong to the same gene family, it is possible that SVSs other than SVS2 also have some effects on sperm capacitation. In this study, we examined the effects of SVS3 and SVS4 on sperm capacitation. Our results showed that both SVS3 and SVS4 are able to bind to spermatozoa, but SVS3 alone showed no effects on sperm capacitation. On the other hand, SVS4 acted as a capacitation inhibitor, although it did not show decapacitation abilities. Interestingly, SVS3 showed an affinity for SVS2 and it facilitated the effects of SVS2. Interaction of SVS2 and spermatozoa is mediated by the ganglioside GM1 in the sperm membrane; however, both SVS3 and SVS4 had weaker affinities for GM1 than SVS2. Therefore, we suggest that separate processes may cause capacitation inhibition and decapacitation, and SVS3 and SVS4 act on sperm capacitation cooperatively with SVS2.


Sign in / Sign up

Export Citation Format

Share Document