vesicle secretion
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 38)

H-INDEX

21
(FIVE YEARS 4)

Author(s):  
Andrea L. Estrada ◽  
Zackary J. Valenti ◽  
Gabriella Hehn ◽  
Adam J. Amorese ◽  
Nicholas S. Williams ◽  
...  

Extracellular vesicles (EVs) are biomarkers and modifiers of human disease. EVs secreted by insulin-responsive tissues like skeletal muscle (SkM) and white adipose (WAT) contribute to metabolic health and disease but the relative abundance of EVs from these tissues has not been directly examined. Human Protein Atlas data and directly measuring EV secretion in mouse SkM and WAT using an ex vivo tissue explant model confirmed that SkM tissue secretes more EVs than WAT. Differences in EV secretion between SkM and WAT were not due to SkM contraction but may be explained by differences in tissue metabolic capacity. We next examined how many EVs secreted from SkM tissue ex vivo and in vivo are myofiber-derived. To do this, a SkM myofiber-specific dual fluorescent reporter mouse was created. Spectral flow cytometry revealed that SkM myofibers are a major source of SkM tissue-derived EVs ex vivo and EV immunocapture indicate that ~5% of circulating tetraspanin-positive EVs are derived from SkM myofibers in vivo. Our findings demonstrate that 1) SkM secretes more EVs than WAT, 2) many SkM tissue EVs are derived from SkM myofibers and 3) SkM myofiber-derived EVs reach the circulation in vivo. These findings advance our understanding of EV secretion between metabolically active tissues and provide direct evidence that SkM myofibers secrete EVs that can reach the circulation in vivo.


2021 ◽  
Author(s):  
Eric H Jung ◽  
Yoon-Dong Park ◽  
Quigly Dragotakes ◽  
Lia Sanchez Ramirez ◽  
Daniel F Smith ◽  
...  

Cryptococcus neoformans is a facultative intracellular pathogen that can replicate and disseminate in mammalian macrophages. In this study, we analyzed fungal proteins identified in murine macrophage-like cells after infection with C. neoformans. To accomplish this, we developed a protocol to identify proteins released from cryptococcal cells inside macrophage-like cells; we identified 127 proteins of fungal origin in infected macrophage-like cells. Among the proteins identified was urease, a known virulence factor, and others such as transaldolase and phospholipase D, which have catalytic activities that could contribute to virulence. This method provides a straightforward methodology to study host-pathogen interactions. We chose to study further Yor1, a relatively uncharacterized protein belonging to the large family of ATP binding cassette transporter (ABC transporters). These transporters belong to a large and ancient protein family found in all extant phyla. While ABC transporters have an enormous diversity of functions across varied species, in pathogenic fungi they are better studied as drug efflux pumps. Analysis of C. neoformans yor1Δ strains revealed defects in non-lytic exocytosis and capsule size, when compared to wild-type strains. We detected no difference in growth rates, cell body size and vesicle secretion. Our results indicate that C. neoformans releases a large suite of proteins during macrophage infection, some of which can modulate fungal virulence and are likely to affect the fungal-macrophage interaction.


2021 ◽  
Vol 22 (16) ◽  
pp. 8438
Author(s):  
Francesc Ibáñez ◽  
Jorge Montesinos ◽  
Estela Area-Gomez ◽  
Consuelo Guerri ◽  
María Pascual

Recent evidence pinpoints extracellular vesicles (EVs) as key players in intercellular communication. Given the importance of cholesterol and sphingomyelin in EV biology, and the relevance of mitochondria-associated endoplasmic reticulum membranes (MAMs) in cholesterol/sphingomyelin homeostasis, we evaluated if MAMs and sphingomyelinases (SMases) could participate in ethanol-induced EV release. EVs were isolated from the extracellular medium of BV2 microglia treated or not with ethanol (50 and 100 mM). Radioactive metabolic tracers combined with thin layer chromatography were used as quantitative methods to assay phospholipid transfer, SMase activity and cholesterol uptake/esterification. Inhibitors of SMase (desipramine and GW4869) and MAM (cyclosporin A) activities were also utilized. Our data show that ethanol increases the secretion and inflammatory molecule concentration of EVs. Ethanol also upregulates MAM activity and alters lipid metabolism by increasing cholesterol uptake, cholesterol esterification and SMase activity in microglia. Notably, the inhibition of either SMase or MAM activity prevented the ethanol-induced increase in EV secretion. Collectively, these results strongly support a lipid-driven mechanism, specifically via SMases and MAM, to explain the effect of ethanol on EV secretion in glial cells.


2021 ◽  
Author(s):  
Kayleah M. Meneses ◽  
Kayla Lewis ◽  
Danielle Beetler ◽  
Bella Hughes ◽  
Verline Justilien

Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 178-OR
Author(s):  
TRACY K. HER ◽  
MATTHEW BROWN ◽  
ALEKSEY MATVEYENKO ◽  
NAUREEN JAVEED

2021 ◽  
Vol 10 (7) ◽  
Author(s):  
Henar Suárez ◽  
Zoraida Andreu ◽  
Carla Mazzeo ◽  
Víctor Toribio ◽  
Aldo Emmanuel Pérez‐Rivera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document