Statistical characterization of the time to reach peak heat release rate for nuclear power plant electrical enclosure fires 1

2017 ◽  
Vol 92 ◽  
pp. 159-163 ◽  
Author(s):  
Raymond H.V. Gallucci
Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2003
Author(s):  
Min Ho Kim ◽  
Hyun Jeong Seo ◽  
Sang Kyu Lee ◽  
Min Chul Lee

In this study, the combustion characteristics and emission of toxic gases of a non-class 1E cable in a nuclear power plant were investigated with respect to the aging period. A thermal accelerated aging method was applied using the Arrhenius equation with the activation energy of the cables and the aging periods of the cables set to zero, 10, 20, 30 and 40 years old by considering the lifetime of a nuclear power plant. According to ISO 5660-1 and ISO 19702, the cone calorimeter Fourier transform infrared spectroscopy test was performed to analyze the combustion characteristics and emission toxicity. In addition, scanning electron microscopy and an energy dispersive X-ray spectrometer were used to examine the change in the surface of the sheath and insulation of the cables according to the aging periods. To compare quantitative fire risks at an early period, the fire performance index (FPI) and fire growth index (FGI) are derived from the test results of the ignition time, peak heat release rate (PHRR) and time to PHRR (tPHRR). When comparing FPI and FGI, the fire risks decreased as the aging period increased, which means that early fire risks may be alleviated through the devolatilization of both the sheath and insulation of the cables. However, when comparing heat release and mass loss, which represent the fire risk at the mid and late period, fire intensity and severity increased with the aging period. The emission of toxic gases coincided with the results obtained from the heat release rate, which confirms that the toxicity of non-aged cables is higher than that of aged cables. From the results, it can be concluded that the aging period significantly affects both the combustion characteristics and toxicity of the emission gas. Therefore, cable degradation with aging should be considered when setting up reinforced safety codes and standards for cables and planning proper operation procedures for nuclear power plants.


2018 ◽  
Vol 16 (1) ◽  
pp. 108-115 ◽  
Author(s):  
A.A. Hanna ◽  
M.A. Nour ◽  
E.R. Souaya ◽  
M.A. sherief ◽  
A.S. Abdelmoaty

AbstractFire performance of polypropylene (PP) containing different percentages of ammonium polyphosphate (APP) with montmorillonite (Mt) or treated montmorillonite (MtT) was carried out by using the cone calorimeter test (CCT). Different samples from ammonium polyphosphate and montmorillonite were mixed with 90% polypropylene. The characterization of the prepared samples indicates that there is incorporation between the components of the samples. Heat release rate (HRR), peak heat release rate (PHRR), average heat release rate (Av-HRR), and time to ignition (TTI) of the samples were obtained from the cone calorimeter test. Also, the fire performance index (FPI) and the fire growth rate (FIGRA) were calculated. The interpretation of the curves and the parameters results from the cone calorimeter test which indicates that the addition of montmorillonite to APP increases its action as a flame retardant for PP. Moreover, the samples contain acid treatment montmorillonite showed an increase in the efficiency of ammonium polyphosphate when used. This result may be due to an increase in the SiO2 content by acid treatment.


2019 ◽  
Vol 37 (3) ◽  
pp. 257-272 ◽  
Author(s):  
Chenkai Zhu ◽  
Jingjing Li ◽  
Mandy Clement ◽  
Xiaosu Yi ◽  
Chris Rudd ◽  
...  

This study investigated the effect of intumescent mats (M1 and M2) with different compositions on the post-fire performance of carbon fibre reinforced composites. The sandwich structure was designed for composites where M1 (carbon fibre reinforced composite-M1) or M2 (carbon fibre reinforced composite-M2) mats were covered on the composite surface. A significant reduction in the peak heat release rate and total heat release was observed from the cone calorimetric data, and carbon fibre reinforced composite-M1 showed the lowest value of 148 kW/m2 and 29 MJ/m2 for peak heat release rate and total heat release, respectively. In addition, a minor influence on mechanical properties was observed due to the variation of composite thickness and resin volume in the composite. The post-fire properties of composite were characterised, and the M1 mat presented better retention of flexural strength and modulus. The feasibility of two-layer model was confirmed to predict the post-fire performance of composites and reduce the reliance on the large amounts of empirical data.


2012 ◽  
Vol 518-523 ◽  
pp. 1269-1272 ◽  
Author(s):  
Liang Yi ◽  
Jie Chen

The aim of this work is to study the burning characteristics of coach fire. With application of computational fluid dynamics (FDS software package), coach fires caused by arson are simulated under different ventilation conditions. Variation of heat release rate (HRR) and distribution of temperature are analyzed. Peak heat release rate of coach fire caused by arson in passenger carriage can reach about 24 MW and maximum temperature in the carriage is over 1000 °C. Results of this study can be referred for fire protection and rescue design of coach.


Sign in / Sign up

Export Citation Format

Share Document