Numerical Simulation on Spreading Characteristic of Coach Fire

2012 ◽  
Vol 518-523 ◽  
pp. 1269-1272 ◽  
Author(s):  
Liang Yi ◽  
Jie Chen

The aim of this work is to study the burning characteristics of coach fire. With application of computational fluid dynamics (FDS software package), coach fires caused by arson are simulated under different ventilation conditions. Variation of heat release rate (HRR) and distribution of temperature are analyzed. Peak heat release rate of coach fire caused by arson in passenger carriage can reach about 24 MW and maximum temperature in the carriage is over 1000 °C. Results of this study can be referred for fire protection and rescue design of coach.

2013 ◽  
Vol 393 ◽  
pp. 845-850 ◽  
Author(s):  
Mohammad Shakir Nasif ◽  
Rafat Al-Waked

Fire occurred evening 10thJuly 1989 at Terwindle Rest Home Auckland. Incident report shows that this fire resulted in seven fatalities and extensive fire damage to the building. The primary cause of the death was carbon monoxide poising from smoke inhalation. The fire started at the lounge which contained ten upholstered couches with polyurethane foam padding. Sprinkler fire protection system was not installed and the building has no smoke detection system (based on the New Zealand Building code requirement that was imposed at that time). In this study, the fire is modeled using Computational Fluid Dynamics (CFD) software FDS (Fire Dynamic Simulator). The heat release rate of the fuel burned was obtained from lab measurement of a sofa. The results were validated against the approximate time scale of the progress of the fire as it was found from the fire investigation report. It has been found that FDS can provide accurate simulation to the fire which can be used to perform fire investigation provided that the correct heat release rate of the fire used in the model.


2017 ◽  
Vol 6 (2) ◽  
pp. 58
Author(s):  
Selçuk Keçel

This study examines the relationship between temperature, CO dispersions, symptoms, and COHb% levels accumulated in the blood on available ventilation conditions in cases of fire at point in an underground mine model. Based on operating parameters (air velocity and direction) of the ventilation system in the underground mine model, fast growing phase fire analyses were conducted according to the heat release rate (HRR) value in the range of 0-61.34MW. In fire scenarios prepared according to the hydrocarbon fuel type (C2.3H4.2O1.3), boundary conditions were calculated depending on the combustion equation considering fuel lower heating value (Qc). CO dispersions inside the tunnel were examined by transferring the time-dependent boundary conditions to the computational fluid dynamics (CFD) program.  yCO, COHb%, and COHb%/∆t changes were calculated according to the HRR value.  Findings regarding the effects of CO emission (acute and chronic poisoning), were expressed according to the HRR value. Keywords Combustion Model Design, Heat Release Rate (HRR), Carbon Monoxide emission, Symptoms and Survival Time, Computational Fluid Dynamics (CFD);


2020 ◽  
Vol 12 (7) ◽  
pp. 168781402092750
Author(s):  
Xiuwei Lu ◽  
Peng Geng

A computational fluid dynamics model of the marine diesel engine was established and validated, and the simulation studies were carried out using this model. Different gravity conditions were set in the computational fluid dynamics model to investigate their effect on marine diesel emissions and performance. By comparing the simulation results under different basic grid sizes, 1.2 mm was selected as the basic grid size of the computational fluid dynamics model. The model uses the experimental data including cylinder pressure, heat release rate, and nitrogen oxides (NO x) emissions to calibrate and validate the model. The simulation results are very close to the experimental data, and slight errors are also within the allowable range. In particular, when considering the heat transfer of the combustion chamber wall, the simulation results of the heat release rate are closer to the experimental data. The simulation results show that gravity has a slight effect on cylinder pressure and heat release rate, and has a certain degree of effect on fuel spray and atomization. The penetration length of the fuel is proportional to the gravity, and the maximum deviation of the Sauter mean diameter of the droplet is 25.74%. The spray and atomization process of fuel directly affects combustion and emissions. The maximum deviation of NO x emissions is 6.03%, which is reduced from 7.46 to 7.01 g/kW·h. Finally, the three-dimensional simulation results of temperature, equivalence ratio, and NO x emission of different crank angles under different gravity conditions are compared.


2018 ◽  
Vol 21 (5) ◽  
pp. 781-793 ◽  
Author(s):  
Xingyi (Hunter) Dai ◽  
Satbir Singh ◽  
Sundar R Krishnan ◽  
Kalyan K Srinivasan

Computational fluid dynamics simulations are performed to investigate the combustion and emission characteristics of a diesel/natural gas dual-fuel engine. The computational fluid dynamics model is validated against experimental measurements of cylinder pressure, heat release rate, and exhaust emissions from a single-cylinder research engine. The model predictions of in-cylinder diesel spray distribution and location of diesel ignition sites are related to the behavior observed in measured and predicted heat release rate and emissions. Various distributions of diesel fuel inside the combustion chamber are obtained by modifying the diesel injection timing and the spray included angle. Model predictions suggest that the distribution of diesel fuel in the combustion chamber has a significant impact on the characteristics of heat release rate, explaining experimental observations. Regimes of combustion in the dual-fuel engine are identified. Turbulent flame speed calculations, premixed turbulent combustion regime diagram analysis, and high-temperature front propagation speed estimation indicated that the dual-fuel combustion in this engine was supported by successive local auto-ignition and not by turbulent flame propagation.


2019 ◽  
Vol 37 (3) ◽  
pp. 257-272 ◽  
Author(s):  
Chenkai Zhu ◽  
Jingjing Li ◽  
Mandy Clement ◽  
Xiaosu Yi ◽  
Chris Rudd ◽  
...  

This study investigated the effect of intumescent mats (M1 and M2) with different compositions on the post-fire performance of carbon fibre reinforced composites. The sandwich structure was designed for composites where M1 (carbon fibre reinforced composite-M1) or M2 (carbon fibre reinforced composite-M2) mats were covered on the composite surface. A significant reduction in the peak heat release rate and total heat release was observed from the cone calorimetric data, and carbon fibre reinforced composite-M1 showed the lowest value of 148 kW/m2 and 29 MJ/m2 for peak heat release rate and total heat release, respectively. In addition, a minor influence on mechanical properties was observed due to the variation of composite thickness and resin volume in the composite. The post-fire properties of composite were characterised, and the M1 mat presented better retention of flexural strength and modulus. The feasibility of two-layer model was confirmed to predict the post-fire performance of composites and reduce the reliance on the large amounts of empirical data.


2019 ◽  
Author(s):  
Craig Weinschenk ◽  
◽  
Daniel Madrzykowski ◽  
Paul Courtney

A set of experiments was conducted to expose different types of energized electrical cords for lamps, office equipment, and appliances to a developing room fire exposure. All of the cords were positioned on the floor and arranged in a manner to receive a similar thermal exposure. Six types of cords commonly used as power supply cords, extension cords, and as part of residential electrical wiring systems were chosen for the experiments. The non-metallic sheathed cables (NMB) typically found in residential electrical branch wiring were included to provide a link to previous research. The basic test design was to expose the six different types of cords, on the floor of a compartment to a growing fire to determine the conditions under which the cord would trip the circuit breaker and/or undergo an arc fault. All of the cords would be energized and installed on a non-combustible surface. Six cord types (18-2 SPT1, 16-3 SJTW, 12-2 NM-B, 12-3 NM-B, 18-3 SVT, 18-2 NISPT-2) and three types of circuit protection (Molded case circuit breaker (MCCB), combination Arc-fault circuit interrupter (AFCI), Ground-fault circuit interrupter (GFCI)) were exposed to six room-scale fires. The circuit protection was remote from the thermal exposure. The six room fires consisted of three replicate fires with two sofas as the main fuel source, two replicate fires with one sofa as the main fuel source and one fire with two sofas and MDF paneling on three walls in the room. Each fuel package was sufficient to support flashover conditions in the room and as a result, the impact on the cords and circuit protection was not significantly different. The average peak heat release rate of the sofa fueled compartment fires with gypsum board ceiling and walls was 6.8 MW. The addition of vinyl covered MDF wall paneling on three of the compartment walls increased the peak heat release rate to 12 MW, although most of the increased energy release occurred outside of the compartment opening. In each experiment during post flashover exposure, the insulation on the cords ignited and burned through, exposing bare conductor. During this period the circuits faulted. The circuit protection devices are not designed to provide thermal protection, and, thus, were installed remote from the fire. The devices operated as designed in all experiments. All of the circuit faults resulted in either a magnetic trip of the conventional circuit breaker or a ground-fault trip in the GFCI or AFCI capable circuit protection devices. Though not required by UL 1699, Standard for Safety for Arc-Fault Circuit-Interrupters as the solution for detection methodology, the AFCIs used had differential current detection. Examination of signal data showed that the only cord types that tripped with a fault to ground were the insulated conductors in non-metallic sheathed cables (12-2 NM-B and 12-3 NM-B). This was expected due to the bare grounding conductor present. Assessments of both the thermal exposure and physical damage to the cords did not reveal any correlation between the thermal exposure, cord damage, and trip type.


2016 ◽  
Vol 13 (10) ◽  
pp. 7545-7547
Author(s):  
Xuefeng Han ◽  
Yao Deng ◽  
Xiaomei Wang ◽  
Juncheng Jiang

When evaluating the ASET (available safe egress time), the fire scenario and the heat release rate (HRR) of the fire need to be set firstly according to the function and the combustible materials of the building, then CFD (Computational Fluent Dynamics) software is used to perform simulations. The ASET is obtained at the time when the hazard index of smoke reaches the minimum value at a safety height, and this height could be defined as critical safety height. It is very important to select critical safety height and heat release rate for the accuracy of the simulation results. The variation of selection of the critical safety height in references is large and it is lacking of credible evidence. This paper discusses the critical safety height based on statistics, probability and ergonomicsvvso as to improve the accuracy, credibility and reliability of the numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document