Natural fire does not affect the structure and beta diversity of plant-pollinator networks, but diminishes floral-visitor specialization in Cerrado

Flora ◽  
2021 ◽  
Vol 281 ◽  
pp. 151869
Author(s):  
Gudryan J. Baronio ◽  
Camila S. Souza ◽  
Pietro K. Maruyama ◽  
Josué Raizer ◽  
Maria Rosângela Sigrist ◽  
...  
2021 ◽  
Author(s):  
Justin A. Bain ◽  
Rachel G. Dickson ◽  
Andrea M. Gruver ◽  
Paul J. CaraDonna

AbstractPollination is essential for ecosystem functioning, yet our understanding of the empirical consequences of species loss for plant-pollinator interactions remains limited. It is hypothesized that the loss of abundant and generalized (well-connected) species from a pollination network will have a large effect on the remaining species and their interactions. However, to date, relatively few studies have experimentally removed species from their natural setting to address this hypothesis. We investigated the consequences of losing an abundant, well-linked species from a series of plant-pollinator networks by experimentally removing the flowers of Helianthella quinquenervis (Asteraceae) from half of a series of 10 paired plots (15 m diameter) within a subalpine ecosystem. We then asked how the localized loss of this species influenced pollinator visitation patterns, floral visitor composition, and interaction network structure. The experimental removal of Helianthella flowers led to an overall decline in plot-level pollinator visitation rates and shifts in pollinator composition. Species-level responses to floral removal differed between the two other abundant, co-flowering plants in our experiment: Potentilla pulcherrima received higher visitation rates, whereas Erigeron speciosus visitation rates did not change. Experimental floral removal altered the structural properties of the localized plant-pollinator networks such that they were more specialized, less nested, and less robust to further species loss. Such changes to interaction structure were consistently driven more by species turnover than by interaction rewiring. Our findings suggest that the local loss of an abundant, well-linked, generalist plant can bring about diverse responses within pollination networks, including potential competitive and facilitative effects for individual species, changes to network structure that may render them more sensitive to future change, but also numerous changes to interactions that may also suggest flexibility in response to species loss.


2018 ◽  
Vol 285 (1870) ◽  
pp. 20172140 ◽  
Author(s):  
Keng-Lou James Hung ◽  
Jennifer M. Kingston ◽  
Matthias Albrecht ◽  
David A. Holway ◽  
Joshua R. Kohn

The western honey bee ( Apis mellifera ) is the most frequent floral visitor of crops worldwide, but quantitative knowledge of its role as a pollinator outside of managed habitats is largely lacking. Here we use a global dataset of 80 published plant–pollinator interaction networks as well as pollinator effectiveness measures from 34 plant species to assess the importance of A. mellifera in natural habitats. Apis mellifera is the most frequent floral visitor in natural habitats worldwide, averaging 13% of floral visits across all networks (range 0–85%), with 5% of plant species recorded as being exclusively visited by A. mellifera . For 33% of the networks and 49% of plant species, however, A. mellifera visitation was never observed, illustrating that many flowering plant taxa and assemblages remain dependent on non- A. mellifera visitors for pollination. Apis mellifera visitation was higher in warmer, less variable climates and on mainland rather than island sites, but did not differ between its native and introduced ranges. With respect to single-visit pollination effectiveness, A. mellifera did not differ from the average non- A. mellifera floral visitor, though it was generally less effective than the most effective non- A. mellifera visitor. Our results argue for a deeper understanding of how A. mellifera , and potential future changes in its range and abundance, shape the ecology, evolution, and conservation of plants, pollinators, and their interactions in natural habitats.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112903 ◽  
Author(s):  
Daniel W. Carstensen ◽  
Malena Sabatino ◽  
Kristian Trøjelsgaard ◽  
Leonor Patricia C. Morellato

Author(s):  
Carlos Lara‐Romero ◽  
Jaume Seguí ◽  
Antonio Pérez‐Delgado ◽  
Manuel Nogales ◽  
Anna Traveset

2019 ◽  
Vol 192 (4) ◽  
pp. 816-827 ◽  
Author(s):  
Vivian Zambon ◽  
Kayna Agostini ◽  
Massimo Nepi ◽  
Mônica Lanzoni Rossi ◽  
Adriana Pinheiro Martinelli ◽  
...  

Abstract Nectar production dynamics can show inter- and intraspecific variation, which can be associated with environmental and ecological factors and with the ultrastructural diversity of the floral nectary. In this context, we recorded nectar production dynamics from a morphofunctional perspective using the hummingbird-pollinated Billbergia distachia (Bromeliaceae). The scale-throated hermit Phaethornis eurynome was the only floral visitor observed, indicating a specialized pollination system. Nectar production showed significant differences between day and night, and the periods of major pollinator activity and nectar secretion were synchronous. The ultrastructural features of the nectary showed some evidence of nectar reabsorption in flowers at night, and it can be inferred that this process may be a key factor in the nocturnal pause in nectar production. In this way, nectary morphoanatomy, nectar traits and an energy-saving mechanism through nectar reabsorption contribute to the well-established relationship between B. distachia and P. eurynome.


Author(s):  
E Martins Camara ◽  
Tubino Andrade Andrade-Tub ◽  
T Pontes Franco ◽  
LN dos Santos ◽  
AFGN dos Santos ◽  
...  

2014 ◽  
Vol 25 (3-4) ◽  
pp. 53-68
Author(s):  
I. V. Goncharenko ◽  
H. M. Holyk

Cenotic diversity and leading ecological factors of its floristic differentiation were studied on an example of two areas – Kyiv parks "Nivki" and "Teremki". It is shown that in megalopolis the Galeobdoloni-Carpinetum impatientosum parviflorae subassociation is formed under anthropogenic pressure on the typical ecotope of near-Dnieper hornbeam oak forests on fresh gray-forest soils. The degree of anthropogenic transformation of cenofloras can be estimated by the number of species of Robinietea and Galio-Urticetea classes, as well as neophytes and cultivars. Phytoindication for hemeroby index may be also used in calculation. We propose the modified index of biotic dispersion (normalized by alpha-diversity) for the estimation of ecophytocenotic range (beta-diversity) of releves series. We found that alpha-diversity initially increases (due to the invasion of antropophytes) at low level of antropogenic pressure, then it decreases (due to the loss of aboriginal species) secondarily with increasing of human impact. Also we found that beta-diversity (differential diversity) decreases, increasing homogeneity of plant cover, under the influence of anthropogenic factor. Vegetation classification was completed by a new original method of cluster analysis, designated as DRSA («distance-ranked sorting assembling»). The classification quality is suggested to be validated on the "seriation" diagram, which is а distance matrix between objects with gradient filling. Dark diagonal blocks confirm clusters’ density (intracluster compactness), uncolored off-diagonal blocks are evidence in favor of clusters’ isolation (intercluster distinctness). In addition, distinction of clusters (syntaxa) in ordination area suggests their independence. For phytoindication we propose to include only species with more than 10% constancy. Furthermore, for the description of syntaxonomic amplitude we suggest to use 25%-75% interquartile scope instead of mean and standard deviation. It is shown that comparative analysis of syntaxa for each ecofactor is convenient to carry out by using violin (bulb) plots. A new approach to the phytoindication of syntaxa, designated as R-phytoindication, was proposed for our study. In this case, the ecofactor values, calculated for individual releves, are not taken into account, however, the composition of cenoflora with species constancies is used that helps us to minimize for phytoindication the influence of non-typical species. We suggested a syntaxon’s amplitude to be described by more robust statistics: for the optimum of amplitude (central tendency) – by a median (instead of arithmetic mean), and for the range of tolerance – by an interquartile scope (instead of standard deviation). We assesses amplitudes of syntaxa by phytoindication method for moisture (Hd), acidity (Rc), soil nitrogen content (Nt), wetting variability (vHd), light regime (Lc), salt regime (Sl). We revealed no significant differences on these ecofactors among ecotopes of our syntaxa, that proved the variant syntaxonomic rank for all syntaxa. We found that the core of species composition of our phytocenoses consists of plants with moderate requirements for moisture, soil nitrogen, light and salt regime. We prove that the leading factor of syntaxonomic differentiation is hidden anthropogenic, which is not subject to direct measurement. But we detect that hidden factor of "human pressure" was correlated with phytoindication parameters (variables) that can be measured "directly" by species composition of plant communities. The most correlated factors were ecofactors of soil nitrogen, wetting variability, light regime and hemeroby. The last one is the most indicative empirically for the assessment of "human impact". We establish that there is a concept of «hemeroby of phytocenosis» (tolerance to human impact), which can be calculated approximately as the mean or the median of hemeroby scores of individual species which are present in it.


Sign in / Sign up

Export Citation Format

Share Document