Determination of biogenic amines in fresh and processed meat by ion chromatography and integrated pulsed amperometric detection on Au electrode

2007 ◽  
Vol 105 (4) ◽  
pp. 1652-1658 ◽  
Author(s):  
Gabriella Favaro ◽  
Paolo Pastore ◽  
Giovanna Saccani ◽  
Silvano Cavalli
2018 ◽  
Vol 5 (4) ◽  
pp. 172128 ◽  
Author(s):  
Ming Ding ◽  
Kailiang Wang

A practical method for the determination of cyanide in bamboo shoots has been developed using microdiffusion preparation integrated with ion chromatography–pulsed amperometric detection (IC-PAD). Cyanide was released from bamboo shoots after Conway cell microdiffusion, and then analysed by IC-PAD. In comparison with the previously reported methods, derivatization and ion-pairing agent addition were not required in this proposed microdiffusion combined with IC-PAD method. The microdiffusion parameters were optimized including hydrolysis systems, temperature, time, and so on. Under the optimum conditions, the linear range of the calibration curve for cyanide was 0.2–200.0 µg kg −1 with satisfactory correlation coefficients of 0.9996 and the limit of detection was 0.2 µg kg −1 ( S/N  = 3). The spiked recovery range was from 92.8 to 98.6%. The intra-day and inter-day relative standard deviations of cyanide were 2.7–14.9% and 3.0–18.3%, respectively. This method was proved to be convenient in operation with high sensitivity, precision and accuracy, and was successfully applied in the determination of cyanide in bamboo shoot samples.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Ewa Jaszczak ◽  
Marek Ruman ◽  
Sylwia Narkowicz ◽  
Jacek Namieśnik ◽  
Żaneta Polkowska

A simple and accurate ion chromatography (IC) method with pulsed amperometric detection (PAD) was proposed for the determination of cyanide ion in urine, sweat, and saliva samples. The sample pretreatment relies on alkaline digestion and application of Dionex OnGuard II H cartridge. Under the optimized conditions, the method showed good linearity in the range of 1–100 μg/L for urine, 5–100 μg/L for saliva, and 3–100 μg/L for sweat samples with determination coefficients (R)>0.992. Low detection limits (LODs) in the range of 1.8 μg/L, 5.1 μg/L, and 5.8 μg/L for urine, saliva, and sweat samples, respectively, and good repeatability (CV < 3%, n=3) were obtained. The proposed method has been successfully applied to the analysis of human biological samples.


Sign in / Sign up

Export Citation Format

Share Document