A method to detect diphenylamine contamination of apple fruit and storages using headspace solid phase micro-extraction and gas chromatography/mass spectroscopy

2014 ◽  
Vol 160 ◽  
pp. 255-259 ◽  
Author(s):  
Jun Song ◽  
Charles F. Forney ◽  
Michael A. Jordan
HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 605a-605
Author(s):  
S. Wee ◽  
R.M. Beaudry

Autoxidation products alpha-farnesene of have been implicated in superficial scald induction for apple (Malus domestica cv. Cortland Apple) fruit. We suspect the apple cuticle acts as a sink where α-farnesene can accumulate and eventually autoxidize into hydroperoxides, conjugated trienes, 6-methyl-5-hepten-2-one (ketone), and other compounds. These oxidized byproducts may diffuse back into the peel, thereby initiating the scald process. Cortland apples were stored at 0.8°C. Volatile cuticular components were analyzed at 2-week intervals by gas chromatography–mass spectroscopy. Only two scald-related volatiles were found, 6-methyl-5-hepten-2-one and α-farnesene. The identification of these compounds may allow the determination of cuticular involvement in superficial scald, as well as a possible correlation between the volatiles and apple scald development. α-farnesene concentrations initially increased and was followed by a decline, possibly due to its autoxidation.


Sign in / Sign up

Export Citation Format

Share Document