Effect of storage and processing on the immunodetectability of fish proteins using pooled monoclonal antibodies in ELISA and dot blot

Food Control ◽  
2021 ◽  
Vol 125 ◽  
pp. 107976
Author(s):  
Yaozhou Zhu ◽  
Yun-Hwa Peggy Hsieh
1986 ◽  
Vol 32 (10) ◽  
pp. 1832-1835 ◽  
Author(s):  
P C Patel ◽  
L Aubin ◽  
J Côte

Abstract We investigated two techniques of immunoblotting--the Western blot and the dot blot--for use in detecting prostatic acid phosphatase (PAP, EC 3.1.3.2). We used polyclonal antisera to human PAP, produced in rabbits by hyperimmunization with purified PAP, and PAP-specific monoclonal antibodies in the immunoenzymatic protocols. We conclude that PAP can be readily detected by Western blots with use of polyclonal antisera, but not with monoclonal antibodies. On the other hand, using a dot blot assay, we could easily detect PAP with both polyclonal and monoclonal antibodies.


1998 ◽  
Vol 73 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Takashi Tsukazaki ◽  
Mariko Yoshida ◽  
Hikaru Namba ◽  
Masao Yamada ◽  
Noshinobu Shimizu ◽  
...  

2022 ◽  
Vol 2022 (1) ◽  
pp. pdb.prot103135
Author(s):  
Edward A. Greenfield

A dot blot is widely used to determine the productivity of a given hybridoma. This assay can also be used to screen a fusion or subclone plate for productive hybridoma clones. First, a nitrocellulose membrane is coated with an affinity-purified goat or rabbit anti-mouse immunoglobulin and then incubated with hybridoma tissue culture supernatant. Monoclonal antibodies in the supernatant are then “captured” on the coated nitrocellulose membrane surface and detected by screening with horseradish peroxidase (HRP).


1997 ◽  
Vol 52 (5-6) ◽  
pp. 391-395
Author(s):  
Juan José López-Moya ◽  
Dionisio López-Abella ◽  
José-Ramón Díaz-Rúiz ◽  
Belén Martinez-Garcia ◽  
Richard Gáborjányi

Abstract Three Hungarian (No.2, 4 and 9), and a Moldavian (K) plum pox virus isolates were compared with a characterized Spanish isolate (5.15) by RT-PCR, ELISA, dot-blot and West­ern blot analysis. Monoclonal antibodies prepared against the external, intermediate and internal sequences of the coat protein of the Spanish isolate were able to differentiate the four isolates. Hungarian isolate No. 2 proved to be serologically identical to the Spanish isolate, while No. 4 showed appreciable differences and No. 9 could be recognized only by the monoclonal antibodies representing the intermedial and internal parts of the coat protein. K isolate showed a more distant relationship to other isolates. Our experiment provided the first demonstration of the presence of D type isolates in Hungary.


1996 ◽  
Vol 42 (1) ◽  
pp. 19-23 ◽  
Author(s):  
N Boschetti ◽  
U Brodbeck ◽  
S P Jensen ◽  
C Koch ◽  
B Nørgaard-Pedersen

Abstract Monoclonal antibodies (mAbs) were raised against a peptide of the 10 C-terminal amino acids of human brain acetylcholinesterase (AChE): H-Tyr-Ser-Lys-Gln-Asp-Arg-Cys-Ser-Asp-Leu-OH. Two positive clones (mAbs 190-1 and 190-2) were selected and tested for their ability to distinguish between mammalian brain and erythrocyte AChEs. In a solid-phase enzyme antigen immunoassay as well as by Western- and dot-blot analysis, both antibodies showed clear binding to AChE from human and bovine brain but not to AChE from erythrocytes. MAbs 190-1 and 190-2 reacted with neither AChE from electric eel nor butyrylcholinesterase from human serum. Both antibodies were used in a quantitative assay for AChE in amniotic fluids, where AChE activity could be found only in samples from open neural tube-defect pregnancies, but not in fluids from normal pregnancies or in artificially blood-contaminated samples.


2011 ◽  
Vol 24 (1) ◽  
pp. 42-50 ◽  
Author(s):  
Ming Yang ◽  
Rebekah van Bruggen ◽  
Wanhong Xu

Seneca Valley virus (SVV), a member of the Picornaviridae family, was implicated in a suspicious vesicular disease discovered in pigs from Canada in 2007. Because any outbreak of vesicular disease in pigs is assumed to be foot-and-mouth disease (FMD) until confirmed otherwise, a test for diagnosing the presence of SVV would be a very useful tool. To develop the diagnostic tests for SVV infection, 5 monoclonal antibodies (mAbs) were produced from mice immunized with binary ethylenimine (BEI)-inactivated SVV. Using a dot blot assay, the reactivity of the mAbs was confirmed to be specific for SVV, not reacting with any of the other vesicular disease viruses tested. The mAbs demonstrated reactivity with SVV antigen in infected cells by an immunohistochemistry assay. An SVV-specific competitive enzyme-linked immunosorbent assay (cELISA) was developed using BEI-inactivated SVV antigen and a mAb for serodiagnosis. The cELISA results were compared to the indirect isotype (immunoglobulin [Ig]M and IgG) ELISA and the virus neutralization test. All SVV experimentally inoculated pigs exhibited a positive SVV-specific antibody response at 6 days postinoculation, and the sera remained positive until the end of the experiment on day 57 (>40% inhibition) using the cELISA. The cELISA reflected the profile of the indirect ELISA for both IgM and IgG. This panel of SVV-specific mAbs is valuable for the identification of SVV antigen and the serological detection of SVV-specific antibodies.


1995 ◽  
Vol 309 (3) ◽  
pp. 801-806 ◽  
Author(s):  
J Bolscher ◽  
E Veerman ◽  
A Van Nieuw Amerongen ◽  
A Tulp ◽  
D Verwoerd

High-M(r) mucins [mucin glycoprotein 1 (MG1)] isolated from human saliva from the individual salivary glands were chemically characterized. The carbohydrate content of MG1 derived from palatal (PAL), submandibular (SM) and sublingual (SL) saliva was typical of mucins but showed heterogeneity, especially in the amount of sialic acid and sulphated sugar residues. The physicochemical properties of native MG1s make conventional SDS/PAGE and ion-exchange chromatography unsuitable for investigating differences between individual samples. Recently a density-gradient electrophoresis (DGE) device has been developed, primarily for separation based on the charge of entire cells or cell organelles [Tulp, Verwoerd and Pieters (1993) Electrophoresis 14, 1295-1301]. We have used this apparatus to study the high-M(r) salivary mucins. Using DGE, the MG1s of individual glands were seen to have clearly distinct electrophoretic mobilities, as monitored by ELISA using MG1-specific monoclonal antibodies. Even within a particular MG1 preparation, subpopulations could be distinguished. DGE analysis of a chemically and enzymically modified MG1 series, followed by ELISA and dot-blot detection using specific monoclonal antibodies, lectins and high-iron diamine staining, suggests that the high electrophoretic mobility of PAL-MG1 is mainly the result of a high sulphate content, whereas the SL subpopulations differ mainly in binding type and amount of sialic acid. SM-MG1 most resembles the low-mobility subpopulation of SL-MG1, except that it has a lower sulphate content. In conclusion, DGE appears to be a powerful method for analysis of native mucin; it has been used to demonstrate that MG1s from the various salivary glands are biochemically much more diverse than was previously assumed.


2010 ◽  
Vol 17 (9) ◽  
pp. 1398-1406 ◽  
Author(s):  
Ming Yang ◽  
Alfonso Clavijo ◽  
Jill Graham ◽  
John Pasick ◽  
James Neufeld ◽  
...  

ABSTRACT A panel of monoclonal antibodies (MAbs) was generated from mice immunized with binary ethylenimine (BEI)-inactivated H7N1 (A/TK/ON/18-2/00) virus. Using a dot blot assay, six of seven MAbs reacted with viruses of the H7 subtype, but not with any of the other 15 hemagglutinin (HA) subtypes tested. Four of the seven MAbs reacted with 14 different H7 isolates, indicating that the MAbs binding epitopes are conserved among viruses of the H7 subtype. The binding epitopes of all seven MAbs were conformational and reacted with the HA1 fraction of the HA protein in Western blots under nonreducing conditions. Applications of these MAbs in the development of rapid tests for H7 subtype viruses were evaluated. The MAbs demonstrated reactivity with AI virus H7 antigen in immunofluorescence and immunohistochemistry assays. Monoclonal antibody 3 showed a very strong immunostaining in the formalin-fixed and paraffin-embedded tissue from the H7N3 virus-infected chicken. A double-antibody sandwich (DAS) enzyme-linked immunosorbent assay (ELISA) was developed using two of the MAbs. The DAS ELISA specifically detected all H7 strains tested in this study. A competitive ELISA (cELISA) for the detection of H7-specific antibodies was evaluated using one MAb and BEI-inactivated H7N1 virus as the antigen. All infected birds showed positive antibody responses at 7 days postinfection. The sensitivity of this cELISA was comparable with that of an influenza A nucleoprotein-based cELISA. This panel of MAbs is valuable in the development of various immunoassays.


1985 ◽  
Vol 225 (2) ◽  
pp. 357-363 ◽  
Author(s):  
M J Halikowski ◽  
C C Liew

Three monoclonal antibody subclasses (IgG1, IgG2a, and IgM) were raised to the phosphoprotein B2 (Mr 68000, pI6.5-8.2) which has been shown previously to be associated with the nucleosomes of rat liver nuclei. These antibodies do not show any significant cross reactivity with CM-cellulose ‘unbound’ non-histone chromosomal proteins, bovine serum albumin or histones. Further verification of the specificity of these antibodies to this phosphoprotein was carried out using both ‘dot’ blot and immunological transfer analysis (‘Western blot‘). The monoclonal antibodies (IgG1 and IgG2a) could also be used to semi-quantify the phosphoprotein B2 in rat liver nuclei. The high specificity and unlimited availability of this type of probe provides a means to study the role(s) of this phosphoprotein in the overall scheme of actively transcribed chromatin.


Sign in / Sign up

Export Citation Format

Share Document