Ordered conformation of xanthan in solutions and “weak gels”: Single helix, double helix – or both?

2019 ◽  
Vol 86 ◽  
pp. 18-25 ◽  
Author(s):  
Edwin R. Morris
Keyword(s):  
Author(s):  
S. Yang ◽  
X. Chen ◽  
S. Motojima

The carbon microcoils and carbon nanocoils were prepared by the catalytic pyrolysis of acetylene under the Ni and/or Fe-containing catalysts, and the growth pattern, morphology and growth mechanism of the carbon coils were examined in detail. The inner coil diameter of carbon microcoils are of several µm and coil gap from zero to several µm. The inner coil diameter of carbon nanocoils are from zero to several ten nm and coil gap from zero to several nm. The carbon microcoils are generally of double helix coils such as DNA while carbon nanocoils were single helix coils such as α-helix proteins, with spring-like or twisted forms. A catalyst grain was usually observed on the tip of carbon coil. The carbon nanocoils are almost amorphous and can be graphitized by the high temperature heat-treatment.


2020 ◽  
Vol 132 (32) ◽  
pp. 13704-13709
Author(s):  
Dongya Bai ◽  
Tengfei Yan ◽  
Shi Wang ◽  
Yanbo Wang ◽  
Jiya Fu ◽  
...  

2012 ◽  
Vol 699 ◽  
pp. 216-262 ◽  
Author(s):  
Philippe Meliga ◽  
François Gallaire ◽  
Jean-Marc Chomaz

AbstractGlobal linear and nonlinear bifurcation analysis is used to revisit the spiral vortex breakdown of nominally axisymmetric swirling jets. For the parameters considered herein, stability analyses single out two unstable linear modes of azimuthal wavenumber $m= \ensuremath{-} 1$ and $m= \ensuremath{-} 2$, bifurcating from the axisymmetric breakdown solution. These modes are interpreted in terms of spiral perturbations wrapped around and behind the axisymmetric bubble, rotating in time in the same direction as the swirling flow but winding in space in the opposite direction. Issues are addressed regarding the role of these modes with respect to the existence, mode selection and internal structure of vortex breakdown, as assessed from the three-dimensional direct numerical simulations of Ruith et al. (J. Fluid Mech., vol. 486, 2003, pp. 331–378). The normal form describing the leading-order nonlinear interaction between modes is computed and analysed. It admits two stable solutions corresponding to pure single and double helices. At large swirl, the axisymmetric solution bifurcates to the double helix which remains the only stable solution. At low and moderate swirl, it bifurcates first to the single helix, and subsequently to the double helix through a series of subcritical bifurcations yielding hysteresis over a finite range of Reynolds numbers, the estimated bifurcation threshold being in good agreement with that observed in the direct numerical simulations. Evidence is provided that this selection is not to be ascribed to classical mean flow corrections induced by the existence of the unstable modes, but to a non-trivial competition between harmonics. Because the frequencies of the leading modes approach a strong $2$:$1$ resonance, an alternative normal form allowing interactions between the $m= \ensuremath{-} 2$ mode and the first harmonics of the $m= \ensuremath{-} 1$ mode is computed and analysed. It admits two stable solutions, the double helix already identified in the non-resonant case, and a single helix differing from that observed in the non-resonant case only by the presence of a slaved, phase-locked harmonic deformation. On behalf of the finite departure from the $2$:$1$ resonance, the amplitude of the slaved harmonic is however low, and the effect of the resonance on the bifurcation structure is merely limited to a reduction of the hysteresis range.


2021 ◽  
Vol 921 (1) ◽  
pp. 012064
Author(s):  
P R Sangle ◽  
L Febriani

Abstract The use helix pile foundations in supporting structures on peat soil has became a challenge for road infrastructure. The helix pile foundation is an alternative for substituting the pile foundation if hard soil is located too far from the surface. Therefore, in this study we examine the bearing capacity of the helix pile foundation on peat soil, including analyzing the effect of the number of helix plates on the bearing capacity of the peat soil. The type of foundation used is a helix pile foundation with a single blade, double blades and triple blades. From the results of the research the bearing capacity of helix double is 35% greater than the bearing capacity of a single helix, the value of triple helix bearing capacity is 25% greater than the double helix and 70% of the single helix. The more number of helix plates used, the greater the bearing capacity of the piles given.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bin Li ◽  
Yuanming Li ◽  
Yangyang Jiang ◽  
Andreas Manz ◽  
Wenming Wu

Abstract This paper presents a digital PCR system based on a novel thermal cycled chip, which wraps microchannels on a trapezoidal structure made of polydimethylsiloxane (PDMS) in a multi-helix manner for the first time. It is found that compared to the single helix chip commonly used in previous reports, this kind of novel multi-helix chip can make the surface temperature in the renaturation zone more uniform, and even in the case of rapid fluid flow, it can improve the efficiency of the polymerase chain reaction. What’s more, the winding method of multi helix (such as double helix, six helix and eight helix) can obtain better temperature uniformity than the winding of odd helix (such as single helix and three helix). As a proof of concept, the temperature-optimized double-helical chip structure is applied to continuous-flow digital PCR and there is no need to add any surfactant to both the oil phase and reagent. In addition, we successfully analyzed the fluorescence signal of continuous-flow digital PCR by using CMOS camera. Finally, this method is applied for the absolute quantification of the clinical serum sample infected by HBV. The accuracy of the test results has been confirmed by commercial instruments.


2020 ◽  
Vol 59 (32) ◽  
pp. 13602-13607 ◽  
Author(s):  
Dongya Bai ◽  
Tengfei Yan ◽  
Shi Wang ◽  
Yanbo Wang ◽  
Jiya Fu ◽  
...  

2015 ◽  
Vol 6 (2) ◽  
pp. 1370-1378 ◽  
Author(s):  
Andrew Joseph Christofferson ◽  
George Yiapanis ◽  
Jing Ming Ren ◽  
Greg Guanghua Qiao ◽  
Kotaro Satoh ◽  
...  

The structure of the it-/st-poly(methyl methacrylate) (PMMA) triple-helix stereocomplex is composed of a double helix of it-PMMA of 9 units per turn surrounded by a single helix of st-PMMA with an average of 20 units per turn.


2021 ◽  
Vol 318 ◽  
pp. 01004
Author(s):  
Azhar S. Ibrahim ◽  
Hassan O. Abbas ◽  
Omar K. Ali

Despite the great development in the manufacture of the helical pile and the development of their use, especially in transmission towers and wind turbines, there is little research on their lateral behavior. In this laboratory study investigate the behavior of screw piles group (2×1) and (1×2) with the spacing to the diameter of helix ratio (S/Dh =1.5, 3, and 4.5) having a diameter (10 mm) and embedded length to diameter ratio (L/D = 40) by using single and double helix embedded in soft clay and extend to stiff clay under a cyclic lateral load of frequency (0.2 Hz). The results showed that increasing the distance between the piles had a great effect on increasing the lateral resistance. the increase of pile spacing in the groups from (1.5 Dh) to (3 and 4.5 Dh) increases the lateral resistance about 34-38% and 50% respectively. Also, from result showed that the group (2×1) gave a lateral resistance more than the group (1×2) about 11% for single helix and about 6% for a double helix, and for the same spacing and configuration the screw pile with double helix gives an increase in lateral resistance about 5-10 % from the single helix.


2002 ◽  
Vol 27 (2) ◽  
pp. 193-196 ◽  
Author(s):  
Shubhamoy Chowdhury ◽  
Peter B. Iveson ◽  
Michael G. B. Drew ◽  
Derek A. Tocher ◽  
Dipankar Datta

Sign in / Sign up

Export Citation Format

Share Document