Soluble extracts from carioca beans (Phaseolus vulgaris L.) affect the gut microbiota and iron related brush border membrane protein expression in vivo (Gallus gallus)

2019 ◽  
Vol 123 ◽  
pp. 172-180 ◽  
Author(s):  
Desirrê Morais Dias ◽  
Nikolai Kolba ◽  
Jon J. Hart ◽  
Michelle Ma ◽  
Sybil T. Sha ◽  
...  
Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2563 ◽  
Author(s):  
Tom Warkentin ◽  
Nikolai Kolba ◽  
Elad Tako

The inclusion of pulses in traditional wheat-based food products is increasing as the food industry and consumers are recognizing the nutritional benefits due to the high protein, antioxidant activity, and good source of dietary fiber of pulses. Iron deficiency is a significant global health challenge, affecting approximately 30% of the world’s population. Dietary iron deficiency is the foremost cause of anemia, a condition that harms cognitive development and increases maternal and infant mortality. This study intended to demonstrate the potential efficacy of low-phytate biofortified pea varieties on dietary iron (Fe) bioavailability, as well as on intestinal microbiome, energetic status, and brush border membrane (BBM) functionality in vivo (Gallus gallus). We hypothesized that the low-phytate biofortified peas would significantly improve Fe bioavailability, BBM functionality, and the prevalence of beneficial bacterial populations. A six-week efficacy feeding (n = 12) was conducted to compare four low-phytate biofortified pea diets with control pea diet (CDC Bronco), as well as a no-pea diet. During the feeding trial, hemoglobin (Hb), body-Hb Fe, feed intake, and body weight were monitored. Upon the completion of the study, hepatic Fe and ferritin, pectoral glycogen, duodenal gene expression, and cecum bacterial population analyses were conducted. The results indicated that certain low-phytate pea varieties provided greater Fe bioavailability and moderately improved Fe status, while they also had significant effects on gut microbiota and duodenal brush border membrane functionality. Our findings provide further evidence that the low-phytate pea varieties appear to improve Fe physiological status and gut microbiota in vivo, and they highlight the likelihood that this strategy can further improve the efficacy and safety of the crop biofortification and mineral bioavailability approach.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jason Wiesinger ◽  
Raymond Glahn ◽  
Karen Cichy ◽  
Nikolai Kolba ◽  
Jon Hart ◽  
...  

Abstract Objectives The common dry bean (Phaseolus vulgaris L.) is a globally produced pulse crop and an important source of protein and micronutrients for millions of people across Latin America and Africa. In these regions, energy for cooking is expensive or scarce and long cooking times deter consumers from purchasing beans. In addition, many of the preferred black and red seed types have phytate and polyphenols that limit the absorption of trace minerals. Yellow beans are unique because their seed coats are rich in kaempferol 3-glucoside, a recently discovered promoter of iron absorption. Several market classes of yellow beans are sold throughout Latin America and Africa, where they are marketed at premium prices for their fast cooking tendencies. Exploring the yellow bean's unique heritage to develop new fast cooking varieties that deliver more absorbable iron would be useful for regions where inhabitants have limited access to fuelwood for cooking. This study compared the iron bioavailability of three fast cooking yellow beans from Africa with contrasting seed coat colors (Manteca, Amarillo, Njano) to slower cooking white and red kidney commercial varieties from North America (Table 1). Methods Cooked beans were formulated into diets with the complementary food crops of potato, rice and cabbage. Iron bioavailability was measured as ferritin formation in an in vitro digestion Caco-2 bioassay and the ability to maintain total body iron hemoglobin (Hb-Fe) during a 6 week in vivo (Gallus gallus) feeding trial. Results Animals fed yellow bean diets had faster growth rates, accumulated more dietary iron and had higher Hb-Fe than animals fed either kidney bean diet (Figure 1). In contrast to yellow beans, the kidney beans had almost no kaempferol 3-glucoside (Table 2). When compared to the other four bean based diets, the fast cooking Manteca yellow bean diet had the highest Caco-2 ferritin formation in vitro (Table 3) and delivered the largest increase in Hb-Fe in vivo (Figure 1). Conclusions Through the added benefit of fast preparation times and improved iron quality after cooking, this study provides evidence that the Manteca market class is worthy of germplasm enhancement as a new convenience food to help alleviate trace mineral deficiencies in regions where beans are widely accepted as a dietary staple. Funding Sources USDA-NIFA. Supporting Tables, Images and/or Graphs


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2457 ◽  
Author(s):  
Pereira da Silva ◽  
Kolba ◽  
Stampini Duarte Martino ◽  
Hart ◽  
Tako

This study assessed and compared the effects of the intra-amniotic administration of various concentrations of soluble extracts from chia seed (Salvia hispanica L.) on the Fe and Zn status, brush border membrane functionality, intestinal morphology, and intestinal bacterial populations, in vivo. The hypothesis was that chia seed soluble extracts will affect the intestinal morphology, functionality and intestinal bacterial populations. By using the Gallus gallus model and the intra-amniotic administration approach, seven treatment groups (non-injected, 18 Ω H2O, 40 mg/mL inulin, non-injected, 5 mg/mL, 10 mg/mL, 25 mg/mL and 50 mg/mL of chia seed soluble extracts) were utilized. At hatch, the cecum, duodenum, liver, pectoral muscle and blood samples were collected for assessment of the relative abundance of the gut microflora, relative expression of Fe- and Zn-related genes and brush border membrane functionality and morphology, relative expression of lipids-related genes, glycogen, and hemoglobin levels, respectively. This study demonstrated that the intra-amniotic administration of chia seed soluble extracts increased (p < 0.05) the villus surface area, villus length, villus width and the number of goblet cells. Further, we observed an increase (p < 0.05) in zinc transporter 1 (ZnT1) and duodenal cytochrome b (Dcytb) proteins gene expression. Our results suggest that the dietary consumption of chia seeds may improve intestinal health and functionality and may indirectly improve iron and zinc intestinal absorption.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1768 ◽  
Author(s):  
Jason A. Wiesinger ◽  
Raymond P. Glahn ◽  
Karen A. Cichy ◽  
Nikolai Kolba ◽  
Jonathan J. Hart ◽  
...  

The common dry bean (Phaseolus vulgaris L.) is a globally produced pulse crop and an important source of micronutrients for millions of people across Latin America and Africa. Many of the preferred black and red seed types in these regions have seed coat polyphenols that inhibit the absorption of iron. Yellow beans are distinct from other market classes because they accumulate the antioxidant kaempferol 3-glucoside in their seed coats. Due to their fast cooking tendencies, yellow beans are often marketed at premium prices in the same geographical regions where dietary iron deficiency is a major health concern. Hence, this study compared the iron bioavailability of three faster cooking yellow beans with contrasting seed coat colors from Africa (Manteca, Amarillo, and Njano) to slower cooking white and red kidney commercial varieties. Iron status and iron bioavailability was assessed by the capacity of a bean based diet to generate and maintain total body hemoglobin iron (Hb-Fe) during a 6 week in vivo (Gallus gallus) feeding trial. Over the course of the experiment, animals fed yellow bean diets had significantly (p ≤ 0.05) higher Hb-Fe than animals fed the white or red kidney bean diet. This study shows that the Manteca yellow bean possess a rare combination of biochemical traits that result in faster cooking times and improved iron bioavailability. The Manteca yellow bean is worthy of germplasm enhancement to address iron deficiency in regions where beans are consumed as a dietary staple.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 292-292
Author(s):  
Nikita Agarwal ◽  
Noa Khen ◽  
Nikolai Kolba ◽  
Elad Tako

Abstract Objectives Assessment and comparison of the effects of various concentrations of soluble extracts of quinoa fiber (Chenopodium quinoa Willd.) and quercetin-3-glucoside on the zinc and iron status, brush border membrane (BBM) functionality, intestinal morphology, and cecal bacterial populations in-vivo (Gallus gallus). Methods The study utilized Gallus gallus intra-amniotic feeding, a clinically validated method to assess the effects of quinoa, quercetin, and control using seven groups (no injection, 18 Ω H2O, 5% inulin, 1% quercetin 3-glucoside, 2.5% quinoa fiber, 5% quinoa fiber, 1% quercetin 3-glucoside + 5% quinoa fiber). Upon hatch, the cecum, duodenum, pectoral muscle, liver, and blood samples were collected for the estimation of the relative abundance of the gut microbiome, mRNA gene expression Zn and Fe-related transporter proteins and brush border membrane functionality and morphology, glycogen, relative expression of lipid-related genes and hemoglobin levels, respectively. Results The results demonstrated an increase (P &lt; 0.05) in villi height, weight, and surface area in the groups administered with quercetin, and a dose-dependent increase was observed with quinoa soluble fiber treatment. Additionally, an increase in ferroportin and duodenal cytochrome B (DcytB) was observed in the group injected with both quinoa and quercetin. Similarly, zinc transporter 7 (ZnT7) and sucrose-isomaltase (SI) gene expression was upregulated in this group. Further, the administration of quinoa soluble fiber altered the composition and function of the cecal microbiome. Conclusions The evidence suggests that quinoa and quercetin have a synergistic effect, together they are found to improve BBM morphology and functionality, affect the intestinal microbiome, increase short-chain fatty acid production, and thereby improving mineral solubility. Quinoa fibers, a polyphenol-rich superfood, may help fight micronutrient deficiencies in target populations. Funding Sources N/A.


2011 ◽  
Vol 100 (9) ◽  
pp. 3939-3950 ◽  
Author(s):  
Katsuaki Ito ◽  
Yasuo Uchida ◽  
Sumio Ohtsuki ◽  
Sanshiro Aizawa ◽  
Hirotaka Kawakami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document